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Abstract

The refinement integral already surfaces in implicit form in Darboux’s reformulation

of the Riemann(-Stieltjes) integral, although the recognition that the upper and lower

integrals are refinement depends on the subsequent convergence theory of E.H. Moore,

who also observed that the Lebesgue integral could be construed as refinement. For a

sub- (or super-) additive integrand, the refinement integral exists as the sup (or inf) over

the approximating sums; it can sometimes be evaluated as a standard integral (e.g. for

BV functions of quotients of measures by replacing the quotient with the derivative and

integrating this point function). Shannon’s definitions of information theory notions

for continuous distributions can be corrected, and the statisticians’ formal integrals

made sense of, as refinement integrals. A substantial study of the refinement integral

was carried out by Kolmogorov in Math. Ann. 103 (1930) 654–696 — he integrates

real-valued integrands of a subset argument on a domain of subsets closed only for

intersection. Some extension and application of this basic source will be presented.

Leibniz’s conception of integration was as addition of infinitely many infinitely small

quantities: To each x he imagined assigned an “infinitesimal” dy whose “sum” for all the

x’s between a and b was to be the integral
∫ b
a
dy. Eighteenth century mathematicians

were unable to make head or tail of this and it was not until Cauchy, who “translated the

definition from the language of metaphysics into that of mathematics” that it became usable.

Cauchy approximated the “infinitesimal” f(x)dx (for a continuous function f) by the finite

f(ξi)(xi−xi−1) for any ξi between xi−1 and xi; took the finite sum of these for any partition

of the interval by finitely many xi’s; and then defined
∫ b
a
f(x)dx as the limit of these finite

sums as the maximum length of the partitioning subintervals goes to zero. By the (uniform)

continuity of f the result is independent of the choice of the ξi in the subintervals: indeed,



the approach to the limit is uniform in these choices—a uniformity which must be postulated

when defining the integral for discontinuous f . The approximation to dy on a subinterval ∆

is thus the subset f(∆)`(∆) of products of all values of f on it by its length; this multi-valued

function of an interval, the diameter of whose value goes to zero as the interval shrinks to a

point, represents the infinitesimal; and the limit of its sum over the partition, the result of

the infinite summation.

The multi-valued functions can be avoided by recourse to the Darboux definition: this

encompasses the totalities f(∆) in terms of their bounds, the sup, f(∆) and inf, f(∆) of f

on ∆; the upper/lower Darboux sums for a given partition are Σf(∆i)`(∆i)/Σ(f∆i)`(∆i)

and the upper/lower integrals, inf Σf(∆i)`(∆i)/ sup Σ(f∆i)`(∆i) over all partitions. These

quantities are actually (refinement) limits: for by adding an additional point to a partition—

i.e. by splitting one of the ∆i into a pair of contiguous subintervals—the upper sum can at

most decrease and the lower at most increase. For any ε > 0 there is a partition whose

upper/lower sum is within ε of the inf/sup—consequently so is every finer partition. The

formulation as a refinement integral permits generalizing the setting from interval functions

to set functions defined for subsets of an abstract set; it is also no longer needed to have

these of the particular form of products—the additive “length function” ` can be absorbed

by the set function.

Fix a system M of subsets of some set X; a partition, DE, of an E ∈ M is a rep-

resentation of E as a finite disjoint union of sets En ∈ M, written E = ΣEn. Partition

D′E refines DE,D′E > DE, if every E ′n ∈ D′E is contained in some Em ∈ DE—this is

transitive: indeed, a partial order on the partitions of E.

We’ll postulate M closed for (finite) intersection: Then every DE induces on every

E ′ ∈ M contained in E a DE ′ : E ′ = ΣEn ∩ E ′; every pair of partitions DE,D′E have a

common (actually a least fine) refinement (D∩D′)E := ΣEm∩E ′n. This makes the partition

partial order directed, which is what is needed for the usual properties of limit to hold: see

Hildebrandt.

Let F be a real-valued function of a set argument (not taking−∞ as value) differentially

defined i.e. (at least) on the sets making up sufficiently fine partitions: e.g. on all those

which refine some given DE. Extend F to a partition function as F (DE) = ΣF (Ej). Thus
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F becomes a “net” and if it converges as DE is refined, F is called (refinement) integrable,

its limit being denoted
∫
E
F (dE).

To obtain the standard integral, say of a bounded measurable function f on a finite

measure space X with its field M of subsets measurable for a finitely additive measure µ,

take for F the function which assigns E ∈M the product f(ξ)µE for some ξ ∈ E. One will

require the convergence to
∫
f(x)µ(dx) (of Σf(ξi)µEi) to occur for all choices of the ξi—and

even uniformly in the chosen ξi: thus convergence of the multi-valued ΣfEi · µEi. This can

be modeled by an F which assigns each E ∈ M a subset of reals rather than a singleton

(equivalently, to have uniform convergence for all the single-valued F ’s sending E into this

subset). The convergence of the F extended to partitions is the same as that for the smallest

intervals enclosing these image subsets, hence one could restrict to interval-image F ’s.

Convergence of (a net of) intervals comes to convergence of the left and right endpoints

to the same limit. Every interval-valued function F on M yields two such functions on the

partitions D′E > DE: an upper ΣFE ′m and a lower ΣFE ′m: the former is ≥ the latter

on the same partition, but nothing further can be asserted in this general setting. The

existence of the integral must thus require explicitly the existence of the refinement limits of

the partition functions ΣFE ′m and ΣFE ′m—these limits could be called the upper and lower

integral; (their ≥ is still maintained)—as well as their equality, the common value being by

definition the integral
∫
E
F (dE). What this comes to is that the intervals [ΣFE ′m, ΣFE ′m]

refinement converge to this limit.

Corresponding to this three-part requirement is a three-part Cauchy condition: For ∀ε >

0 there should exist a DE such that for all D′E > DE, |ΣFE ′i − ΣFEj| < ε; the same

with F replacing F ; and finally ΣFE ′i − ΣFE ′i < ε. (These could be combined into a single

condition: |ΣFE ′i − ΣFE ′′j | < ε for all D′,D′′ > D. Proof: First deduce the last inequality.)

Kolmogorov’s take on the Leibniz paradigm is thus to realize the “infinitesimal” at a

point as the set function F on the filter of subsets in the domain of F containing the point,

the diameter of whose value converges to zero as the subsets shrink to the point, and their

“infinite sum” over E as the refinement limit of the values of F as evaluated on the partitions

of E.

The integral is additive in the domain of integration: The subsets over which it exists
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are closed under disjoint union and its value is the sum of its values on the summands.

Proof: Sufficiently fine partitions of the union are obtained by combining partitions of the

summands; and the limit of a sum is the sum of the limits (if they exist).

Integrability is inherited by every E ′ ⊂ E which occurs in some DE. Proof: The Cauchy

condition holds also with D replaced by any refinement, e.g. by D ∩ D′, which induces a

partition of E ′. Complete any refinement of the latter to a partition of E by leaving D ∩D′

unchanged on the complement of E ′. The first two Cauchy conditions then follow from their

holding for partitions of E; the last from the positivity of the difference. By additivity, this

may be construed as the integral of the function made zero on the complement.

As a function of E,
∫
E
F (dE) is appropriately designated indefinite integral (on the

real line this construes
∫
f(x) dx as an additive interval function rather than as a function

of its upper limit): it is a single-valued additive set function defined on the subsets of the

domain occurring in one of its partitions.

We will now characterize this set function and so obtain an alternate “descriptive” defi-

nition of the refinement integral.

To this end, declare two differentially defined functions f and g to be differentially

equivalent if for every ε > 0 there is a DE such that for every finer D′E, Σ|fE ′n−gE ′n| < ε.

What this comes to is that the set function |f − g|(E ′) := |fE ′ − gE ′| integrates to 0 over

E. Since it is non-negative, its indefinite integral is identically zero on ME, the subsets

occurring in partitions of E (reducing the integrand to 0 on the complement of its domain

results in an integrand dominated by |f − g|) a situation which could be called “zero almost

everywhere.” Since the absolute value of h := f − g integrates identically to zero, it follows

(e.g. from −|h| ≤ h ≤ |h|) that so does h.

We show the converse: If
∫
G
h(dG) = 0 for all G ∈ ME then also

∫
G
|h|(dG) = 0 —

specifically, if |Σh(E ′m)|, |ΣhE ′m| < ε for all D′E > DE then Σ|h(E ′m)| ≤ 4ε for sufficiently

fine D′E — if not: i.e. if lim
D′E>DE

sup Σ|hEn′| > 4ε, one of these D′E would have the sum of

its like-signed terms, say the positive ones, > 2ε; the integral over each of the E ′ sent by h

to a negative being zero, one can decompose each of these so that the sum of h over all these

subpartitions is > −ε, resulting in a global decomposition of E finer than DE over which h

sums to > ε.
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Thus differential equivalence of f and g comes to
∫
G
f(dG)−g(dG) = 0 for all G ∈ME:

If one of f, g is integrable, so is the other and the integrals are equal — and conversely.

In particular, since the integral is a single-valued additive function on ME, its integral

exists and equals its value, so that every integrable function is differentially equivalent to

its indefinite integral. Conversely, if f is differentially equivalent to a single-valued additive

function, it is integrable with indefinite integral that function. The indefinite integral is thus

the unique additive function differentially equivalent to the integrand.

A (single-valued) additive function was seen to be integrable (to its value on the do-

main E); more generally, a subadditive function, i.e. f(E) ≤ Σf(Em) on the partitions

of every E, is integrable to the sup Σf(Em) over all partitions of an E (one needs to re-

quire the Σf(Em) to be bounded if one is unwilling to accept infinite values for the in-

tegral). If f is additive |f | is subadditive (since | | is):
∫
E
|f(dE)| is then the (total)

variation of f on E: e.g. if F is the interval function F (b) − F (a) then this yields the

familiar sup Σ|F (xi) − F (xi−1)|. A BV additive F can be written as a difference of non-

negatives: 1
2

[∫
G
|f(dG)|+ f(G)

]
− 1

2

[∫
G
|f(dG)| − f(G)

]
(
∫
≥ ±f(G) by subadditivity)—

however without the extremal property of Jordan’s.

If f is integrable over E, its differential equivalence with its indefinite integral F entails

that of |f | with |F |. Thus an absolutely integrable f has a BV indefinite integral (in the

Lebesgue theory, it is even absolutely continuous).

From every (possibly multi-valued) point function f(x) one can create a set function

f(E) := ∪
x∈E

f(x). This is a (complete) ∪–morphism. For just a subset–preserving interval–

valued set map, define its “measurability” to mean convergence (under refinement) to zero

of max
i
fEi−fEi for partitions E = ΣEi. Then a product fµ, with f measurable and µBV ,

is integrable. If µ is non-negative and additive, the upper/lower sums are non-increasing/-

decreasing under refinement and one obtains the upper/lower integral as an inf / sup as on

the real line.

The following convergence theorem can be extracted from [Fl].

Let f be bounded on a BV set E containing an increasing sequence En of subsets con-

verging in measure to E; for fnµ integrable on En, let supEn |fx − fnx| converge to zero.

Then fµ is integrable to lim
∫
En
fnµ.
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Call an interval-valued set function g differentially contained (on E) in f if on suf-

ficiently fine partitions of E = ΣEm,ΣfEm ≤ ΣgEm ≤ ΣgEm ≤ ΣfEm. Then if f is

integrable over E, so is g, and to the same value. The condition is certainly satisfied if

the values of g on every subset E ′ (in sufficiently fine partitions of E) lie between fE ′ and

fE ′—i.e. if values of g are straddled by values of f on every such subset. Values of g are

straddled by values of a product fµ , of which the second factor µ is single-valued, if and

only if values of g/µ are by those of f— this entails that integrability of fµ yields that of g

to the same value.

This justifies the additivity of the integral for integrands which are products: i.e. the

integrability of fg and fg′ entails that of f(g + g′) and its value as the sum of their values:

In view of the set identity F (G + G′) ⊂ FG + FG′, the values of f(g + g′) are contained

in those of fg + fg′; the latter’s integrability to the sum
∫
fg +

∫
fg′ follows because the

extrema of a sum are straddled by the sum of the extrema.

Finally, there is the possibility of evaluating certain refinement integrals as classical

Lebesgue or Stieltjes integrals of related integrands. As seen above, the refinement integral

of g will exist and equal that of the productfµ with single-valued µ if values of g/µ are

straddled by those of f on subsets of sufficiently fine partitions. When µ is also additive

and f derives from a point-function as the image function on subsets, this “Stieltjes-type

integral” coincides with the Lebesgue integral when the set-system is that of the measurable

sets (due to E.H. Moore)—indeed, a bounded measurable function on a set of finite measure

refinement integrates to its Lebesgue integral, since there are partitions on whose sets the

oscillation of f is arbitrarily small.

Since the indefinite refinement integral is finitely additive, it can be evaluated as a classical

Lebesgue-Stieltjes integral of a given σ-additive measure µ for a suitable point integrand,

just when it is µ absolutely continuous. If λ is additive and bounded by µ, then dλ
dµ

is a

bounded measurable function whose values on measurable E straddle λ(E)
µ(E)

. This is preserved

by postcomposition with piecewise monotone (increasing or decreasing) m’s—which would

serve to reduce also refinement integrals of m
[
λ(E)
µ(E)

]
· µ (even for BV m by linearity) to

ordinary integrals
∫
m
[
dλ
dµ

]
dµ.

One encounters this form with m = − ln in Information Theory; the form m[λ
µ
] is, even for
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any convex m, subadditive so this refinement integral is also the sup over the approximating

sums. Indeed, for any convex function f, vf(u
v
) is a convex function of u and v > 0 [V,

p. 260]:

f

(
αu + · · ·
αv + · · ·

)
= f

(
av

αv + · · ·
· u
v

+ · · ·
)
≤ αv

αv + · · ·
f
(u
v

)
+ · · · ;

a quotient of additive functions λ/µ sends disjoint unions to convex combinations: λ+···
µ+··· =

µ
µ+··· ·

λ
µ

+ · · · , and a convex function of these is dominated by the convex combination of its

values, hence by the sum of its values—thus a convex function of λ/µ is subadditive.

The basic quantity in Information Theory is the “average self-information” or “uncer-

tainty” of a finite probability distribution

H{pi} := Σpi ln
1

pi
= −Σpi ln pi.

In extending this to infinite distributions, Shannon proposed by analogy, for a distribution

with density p

H{p} :=

∫
p(x) ln

1

p(x)
dx = −

∫
p(x) ln p(x)dx.

But this is wrong, e.g., it could be negative, which would not be interpretable; more seriously

it is not invariant under change of variable.

The correct definition is as a refinement integral∫
P (dX) ln

1

P (dX)
= −

∫
P (dX) lnP (dX);

that is, one divides the interval into finitely many disjoint measurable sets {Ei} and approxi-

mates with finite sums −Σi

∫
Ei
pdx ln

∫
Ei
pdx. Since ln

(
1
v

)
is convex, the form is subadditive,

whence the integral exists as the sup. It was calculated in [F] and gives∞ except (possibly)

for a discrete distribution, for which it refinement integrates to

Σpi ln
1

pi
.

Of fundamental significance in communication theory is the average decrease in uncer-

tainty in one marginal (of a joint) distribution due to knowledge of the other. The quantity

to be averaged (over the joint distribution) is the difference of the negative ln of the “a pri-

ori” (marginal) distribution {pi} and that of the “a posteriori” (conditional—on the other
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marginal) distribution pi|j :

Σpij ln
pi|j
pi

= Σpij ln
pij
pipj

.

This is seen to be symmetric in the marginals and so is called their “mutual information.” It

is subadditive under refinement (considering pipj as a product distribution): hence for infinite

distributions its refinement integral is the sup over the finite partitions of this expression—

also a standard integral of the expression with the quotient of the joint over the product

distribution replaced by their derivative [GY, Theorem 1.1].

Renyi’s “information gain of order α 6= 1” for discrete distributions [R, p. 587] is (except

for a constant factor)

Iα(Q‖P ) = ln Σ
qαk
pα−1
k

= ln Σ

(
q

p

)α
p.

On refinement, this goes over (xα is convex for α > 1, concave for α < 1) to

ln

∫ (
dQ

dP

)α
dP.

In particular, with P and Q distributions a.c. with respect to Lebesgue measure, the above

yields [R, Theorem 2, p. 595].

The paradigm in Statistics is a family F (x; θ) of cumulative distribution functions in-

dexed by an interval of θ’s; on the basis of an “observed” n-tuple one forms an “estimate”

θ̃(x1, . . . , xn). [W] proposes to differentiate the identity
∫∞
−∞ dF (x; θ) = 1 and finds

d

dθ

∫ ∞
−∞

dF (x; θ) =

∫ ∞
−∞

[
∂

∂θ
log dF (x; θ)

]
dF (x; θ) = 0.

The bracket is obviously trying to be

[ ] =
∂
∂θ
dF (x; θ)

dF (x; θ)
;

and on the next page he explains the bracket as

[ ] = lim
y↑x

∂
∂θ

[F (x; θ)− F (y; θ)]

F (x; θ)− F (y; θ)
= lim

y↑x

∂
∂θ
P ((y, x] | θ)
P ((y, x] | θ)

.

However, independent of the existence of this limit or of its expectation, the refinement

integral ∫
d
∂F (x; θ)

∂θ
=

∫
∂F

∂θ
(dx; θ)
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exists for differentiable F over every bounded interval since ∂F
∂θ

is, like F, additive; only

the existence of the limit of ∂F
∂θ

at ±∞ is needed for the existence of the integral, and its

vanishing to justify the passage of differentiation under
∫∞
−∞ .

Similarly, his

H(θ, θ′) :=

∫ ∞
−∞

[log dF (x; θ′)]dF (x; θ)

could be interpreted as a refinement integral∫
[logP (dx | θ′)]P (dx | θ).

An “unbiased estimator” θ̃ is one for which E(θ̃ | θ) = θ, i.e.
∫

(θ̃−θ)dF (x1, . . . , xn; θ) = 0.

Since θ̃ does not involve θ, differentiation yields 1 =
∫

(θ̃ − θ) ∂
∂θ
dF =

∫
(θ̃ − θ)d∂F

∂θ
. Let’s

require d∂F
∂θ

to have an L2 quotient with respect to dF, i.e. to have ∂
∂θ

log dF, the “derivative”

d∂F
∂θ
/dF, ∈ L2(dF ); then by Schwartz, 1 ≤ σ2θ̃ · E

(
d ∂F
∂θ

dF

)2

and we obtain a lower bound for

the variance of the estimator

σ2θ̃ ≥ 1

E
[(

d ∂F
∂θ

dF

)2
] .

That this “derivative” may be obtained pointwise from left differentiation with respect to F

to justify d∂F
∂θ

=
[
∂
∂θ
dF/dF

]
dF, follows because an everywhere left differentiable function is

(dF ) a.e. differentiable [S, p. 236].

It is worth noting that in the usual settings the two derivatives actually coincide. For

discrete distributions F has jumps pi and ∂F
∂θ

(if it exists) will have jumps dpi
dθ

at the same

place; in the (absolutely) continuous case, dF = p(x; θ)dx and, with passage of ∂
∂θ

into∫
p(x, θ)dx permitted, one has d∂F

∂θ
/dF = 1

p(x;θ)
∂p(x;θ)
∂θ

by the Chain Rule, both pointwise and

for the measures.

An integral
∫ (

df
dF

)2
dF is the value of a refinement (called a “Hellinger”) integral

∫ f2(dI)
F (dI)

,

since the value of (∆f)2

(∆F )2 (F nondecreasing) at intervals I not including 0 is straddled by values

of
(
df
dF

)2
at points of I. Since x2 is convex, this refinement integral is a sup, which is the

form conceived by Hellinger in his 1907 Göttingen dissertation.
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