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Abstract

It is shown that if (X,). is a Bochner integrable stochastic process
taking values in a Banach lattice E, the convergence of f(X,) to f(X)
where f is in a total subset of E* implies the a.s. convergence. For any
Banach space FE-valued stochastic process of Pettis integrable strongly
measurable functions (X, )n, the convergence of f(X,) to f(X) for each
f in a total subset of E* implies the convergence in the Pettis norm. Also
convergence theorems of Mc-Shane integrable martingales are given.

1. Introduction

In [4] and [7] it is proved that if (X,,), is a stochastic process of Bochner
integrable functions taking values in a Banach space E, the convergence of f(X,,)
to f(X) where f is in a total subset of E*, implies the scalar convergence of
X, to X. The same result is extended to stochastic processes taking values in
a Banach lattice E.

It is known that the weak Radon-Nikodym property is equivalent to the
convergence in Pettis norm of a uniformly integrable martingale (see [10]). If this
property does not hold, we ask for which class T of functionals f the convergence
of the real valued stochastic process f(X,) to f(X) implies the convergence of
X, to X in Pettis norm. In section 4 we prove that for Pettis-integrable strongly
measurable martingales, T' can be a total subset of E* (Theorem 3).
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In the last section we shall deal with martingales of McShane integrable
functions and the analogous of Theorem 3 is proved (see Theorem 8).

2. Preliminaries

Let E be a Banach space with norm | - |, B(E) its unit ball and E* its dual.
A subset T of E* is called a total set over E if f(x) = 0 for each f € T implies
xz=0.

Throughout (2, F, P) is a probability space and (F,)n,en a family of sub-o-
algebras of F such that F,, C F,, if m < n. Moreover, without loss of generality,
we will assume that F is the completion of o(U,F,,).

Let Fy be a sub-o-algebra of F, then a function X : Q2 — FE is called weakly Fy
-measurable if the function f(X) is Fo-measurable for every f € E*. A weakly
F-measurable function is called weakly measurable. A function X : Q — FE is
said to be Pettis integrable if f(X) is Lebesgue integrable on 2 for each f € E*
and there exists a set function v : F — E such that

o) = [ fx

for all f € E* and A € F. In this case we write v(A) = P[, X and we call
v(Q) the Pettis integral of X over Q and v is the indefinite Pettis integral of X.
The space of all E-valued Pettis integrable functions is denoted by P(E). The
Pettis norm of a Pettis integrable functions is:

Xle=su{ [ 1701 1 € BEN) |

The pair (X, F,,) is called a stochastic process of Pettis integrable functions if,
for each n € IN, X,, : Q — FE is Pettis integrable, X,, is weakly F,-measurable
and the Pettis conditional expectation E(X,|F,) of X, exists for all n > m.
It should be noted that, in general, if X is only Pettis integrable, even it is
strongly measurable, there is no Pettis conditional expectation of X with respect
to a sub-o-algebra of F. The stochastic process (X, Fy) is called a martingale
it B(X,|Fm) = X for n > m.

A martingale (X,,,F,) is

(1) convergent in P(F) if there exists a function X € P(E) such that
lim | X, — X|p = 0;
n—oo
(#) wariationally bounded if sup,, [v,|(Q) < oo where v,(A) = P[, X,, and
|vn| denotes the variation of v,;
(¢77) uniformly continuous if limp(ay_¢ PfA X,, = 0 uniformly with respect to
n;

(v) uniformly integrable if it is variationally bounded and uniformly conti-
nuous.



3. Banach lattice valued stochastic processes

In this section we consider stochastic processes consisting of strongly mea-
surable Bochner integrable random variables taking values in a Banach lattice
(see [5], Chapter VIII). For an element x € E we denote by 2" the least upper
bound between x and 0. The Banach lattice F is said to have the order conti-
nuous norm or, briefly, to be order continuous, if for every downward directed

set {Zo}a in E with Aqz, = 0, then lim, |24 = 0. The norm on a Banach
space has the Kadec-Klee property with respect to a set D C E* if whenever
lim,, f(x,) = f(z) for every f € D and lim, |z,| = |z|, then lim, z, = =

strongly. If D = E* we say that the norm has the Kadec-Klee property. 1t was
proved in [3] the following renorming Theorem for Banach lattices.

Theorem 1 A Banach lattice E is order continuous if and only if there is an
equivalent lattice norm on E with the Kadec-Klee property.

It is obvious that if E is separable, the equivalent norm has the Kadec-Klee
property with respect to a countable set of functionals.

A stopping time is a map 7 : @ — IN U {oo} such that, for each n € IV,
{r<n}={weQ:7(w) <n} e F, Wedenote by I' be the collection of all
simple stopping times (i.e. taking finitely many values and not taking the value
00), then T is a set filtering to the right. A stochastic process (X, F,) is called
a subpramart if for each € > 0 there exists 7y € I" such that for all 7 and ¢ in T,
T,0 > Tg then

P({I(X, — E(X|F))*] > e}) < e

If (X,,F,) is a positive supramart, then for each f € (E*)™, where (E*)*
denotes the nonnegative cone in E*, (f(X,), Fn) and (| X, |, Fy) are real valued
positive subpramarts ([5], Lemma viii.1.12)

If E has the Radon-Nikodym property each L'-bounded subpramart converges
strongly a.s.. Without assuming this property we ask which class of functionals
has the property that the scalar convergence of f(X,,) to f(X) for each f in
the class implies the strong convergence. We are able to prove the following
theorem.

Theorem 2 (/8], Theorem 3.8) Let E be an order continuous Banach lattice,
which is weakly sequentially complete and let T be a total subset of E*. Let
(X, Fn) be a positive subpramart with an L'-bounded subsequence and let X
be a strongly measurable random variable. Assume that, for each f € T, f(X,)
converges to f(X) a.s. (the null set depends on f). Then X, converges to X
strongly a.s..

PROOF. Since (X,,) and X are strongly measurable it is possible to assume that
E is separable. By a decomposition theorem ([5], Lemma viii.1.17) and the fact
that a subsequence of (X,,),, still denoted by (X,,),, is L'-bounded we can also
assume that

X, =Y, +2,,



where Y,,, and Z,, are F,, -measurable, (Y,,, )i is uniformly integrable and
limy, Z,,, =0, a.s.. Foreach f € (E*)", f(X,,), is a real valued subpramart with
an L'-bounded subsequence, then it converges a.s. to a real random variable
Xy. Also f(Yn,) converges to X; a.s. and in L'. In particular for each f € T,
limg, f(Yy,) = f(X). So for A € o(U,Fy)

lilgn/A Ff(Ya,)

exists in JR. Hence ([, Yy, )& is weakly Chauchy. Since the Banach lattice E is
weakly sequentially complete, let for every A € o(U,F,)

,u(A):w—lim/Ynk.
kJa

Then p is a measure of bounded variation and it is absolutely continuous with
respect to P. For each f € T we have

) =tim [ 000 = [ 000

Let A, = {|X| < n}, then X14, is Bochner integrable and

Fl(An)) = /A 0= /A X

Since T is a total set it follows that

W(Ay) = /A X,

Moreover the uniform integrability of (Y, )r implies that

/ X1 = 1l (42) < s / Y. (1)

n

and since X is strongly measurable, P(U, (]| X| < n)) = 1. Letting n — oo in
(1), we get that X is Bochner integrable and for each A € o(U,F},)

M(A):/AX.

It follows that
[ 160 = sty =tip [ 50 = [ x5,

for each f € (E*)T and A € U,F,. Hence f(X) = Xy as. and for each
f e (E"T, f(X,) converges to f(X) a.s.. Let || || denote the Kadec-Klee norm



equivalent to | - |, as in Theorem 1, and let D € (E*)" be a countable nor-
ming subset. Applying ([5], Lemma viii.1.15) to the sequence {(f(X,), Fn),n €
IN, f € D} it follows that lim,, || X, | = || X||, a.s.. Now invoking again Theorem
1 we get the strong convergence of X,, to X and the assert follows. O

Considering that if a Banach space E does not contain cg, it is order conti-
nuous and weakly sequentially complete, the following corollary holds.

Corollary 1 Let E be a Banach lattice not containing cy as an isomorphic
copy and let T be a total subset of E*. Let (X,,F,) be a positive subpramart
with an L'-bounded subsequence and let X be a strongly measurable random
variable. Assume that, for each f € T, f(X,,) converges to f(X) a.s. (the null
set depends on f). Then X, converges to X strongly a.s..

4. Convergence of Pettis integrable stochastic processes

In this section we consider Pettis integrable stochastic processes.

Theorem 3 Let (X, F,) be an uniformly integrable martingale of Pettis inte-
grable strongly measurable functions, X a weakly measurable function. Let T be
a total subset of X*, and assume that f(X,) converges to f(X) a.s. for each
feT (the null set depends on f). Then X € P(E) and X,, converges to X in
the Pettis norm.

PRrROOF. By Pettis measurability Theorem we can assume that E is separable,
then since T is closed and weak*-dense, the assert follows from [9] Theorem 1.
O

Remark 1 Since in Theorem 3 we can suppose E separable, the weak measu-
rability of X can be replaced by the measurability of the functions f(X) for all
feT (see [2]).

We will extend Theorem 3 to more general stochastic processes (X, Fy,).

Definition 1 A stochastic process (X, Fy,) of Bochner integrable functions is
said to be L'-bounded if sup,, [, | Xn| < co.

Definition 2 A stochastic process (X,,Fyp) of strongly measurable functions is
said to be a game which becomes fairer with time (briefly o P-martingale), if
for each e >0
lim sup P(|E(X.n|Fn) — Xn| > ) =0.
n m>



If for each e >0

lim sup P( sup |E(X,|Fy) —Xq| >¢€)=0

n m>n n<qg<m
the sequence (X, Fy) is called a mil.

Definition 3 A stochastic process (X, Fn) of Pettis integrable functions is
o-bounded if there exists an increasing sequence (Byp)n, Bn € Fn, such that
lim,, P(B,) = 1 and the sequence (X,,) restricted to each By, m = 1,2,... is
L'-bounded.

For more details and the proofs of the following Theorems see [9].

Theorem 4 Let (X,,F,) be a o-bounded P-martingale of Pettis integrable
functions and X a weakly measurable function. Let T be a total subset of E*,
and assume that f(X,) converges to f(X) a.s. for each f € T (the null set
depends on f). Then X, converges to X in probability (i.e. for every e > 0 we
have lim,_, P(|X,, — X| >¢) =0).

Theorem 5 Let (X,,, F,) be a o-bounded mil of Pettis integrable strongly mea-
surable functions and X a weakly measurable function. Moreover let T be a total
subset of E*, and assume that f(X,) converges to f(X) a.s. for each f € T (the
null set depends on f). Then X,, converges to X a.s. in the strong topology.

As we noted in Remark 1 the hypothesis of weak measurability of X in Theorems
4 and 5 can be substituted by the measurability of the functions f(X) for all
fer.

Assuming a weaker strong measurability condition on the martingale (X,,, F,),
in Theorem 3 we obtain:

Theorem 6 Let (X,,,F,) be an uniformly integrable martingale of Pettis inte-
grable functions such that the indefinite integrals of all X,, have norm relatively
compact range and let X be a weakly measurable function. Assume that there
exists an increasing sequence of measurable sets (By)m, Bm € Fm, such that
lim,,, P(By,) = 1 and that the function X, restricted to each By, is strongly
measurable, n = 1,2,.... Assume, moreover, that for each f € T, where T is
a total set, f(X,) converges to f(X) a.s. (the null set depends on f). Then
X € P(E) and X,, converges to X in the Pettis norm.

Theorem 3 and Theorem 6 hold also for amarts, changing the proofs as in
[13] Theorem 2.



5. Martingale of McShane integrable functions

In this section we consider stochastic processes of McShane integrable func-
tions.
Let (Q, A, F, P) be a probability space which is a quasi-Radon, outer regular
and compact probability space. A Mc-Shane partition of 2 is a set {(S;,w;),7 =
1,...,p} where (5;); is a disjoint family of measurable sets of finite measure,
PQ\U_,S;) = 0and w; € Q for each ¢ = 1,...,p. A gauge on Q is a
function A : @ — A such that w € A(w) for each w € Q. A Mc-Shane partition
{(Sisws),i =1,...,p} is subordinate to a gauge A if S; C A(w;) fori=1,...,p.
A function f : Q — E is McShane integrable (briefly M-integrable), with Mc-
Shane integral z € E if for each € > 0 there exists a gauge A : Q@ — A, such
that

<e€

ZP(Si)f(wi) —Z
i=1

for each McShane partition {(S;,w;) : i =1,...,p} subordinate to A.

It is known that if f : Q@ — E is M-integrable, then vy (Q) = {(M) [, f: A € F}
is totally bounded (see [1], Theorem B and [6], Corollary 3E), hence it is norm
relatively compact. Denote by M(E) the set of all M-integrable functions en-
dowed with the seminorm

X sup{/glf(X) e B(E*)},

which is equivalent to the seminorm ([11])

(]| -2c}

If G is a sub-g-algebra of F, X is McShane integrable and Y is McShane inte-
grable on (2, 4,3, P), then Y is called the McShane conditional expectation of
X with respect to G if

(i) Y is weakly G-measurable;
(i) for every Ac G, M [, Y =M[, X.

The symbol Y = Ej;(X|G) will denote the McShane conditional expectation of
X with respect to G.

We say that (X,,,Fy,) is a stochastic process of M-integrable functions, if for
each n € IN, X, is M-integrable, X, is weakly measurable with respect to
F. and the McShane conditional expectation Ey (X, |Fm) of X,, exists for all
n > m. Also we observe that the conditional expectation of a M-integrable
function does not always exist, indeed the same is true for strongly measurable
Pettis integrable functions and a strongly measurable Pettis integrable function
is McShane integrable.



As in case of a stochastic process of Pettis integrable functions, we say that
(X, Fn) is a martingale if X, is a M-integrable function for each n, and if for
all n > m Ep(Xp|Fm) = X or equivalently for all A € F,,

M/Xm:M/Xn.
A A

If X is M-integrable and Ej(X|F,,) exists for all n, then X,, = Ep(X|F,) is
called a closed martingale. Since a M-integrable function is Pettis integrable and
vi(Q) = {(M)[, f: A€ F} is norm relatively compact, there exists a sequence
of simple functions f, : Q@ — E, converging to f in |- |as, i.e. lim|f, — f|ar = 0.
The following proposition is an extension of Lemma 1.4 of [12] to a martingale
of McShane integrable functions. The proof follows with suitable changes.

Proposition 1 Let (X,,,F,) be a martingale of M-integrable functions. Then
the following are equivalent:

(1) there exists a M -integrable function X such that X,, is | - |p convergent
to X;

(i1) there exists a M-integrable function X such that Ey(X|F,) = X, for
each n € IN;

(ii1) there exists a M-integrable function X such that for each A € U,F,
limM/ Xn:M/ X.
n A A

The condition (i7) = (i) in the previous Proposition says that a closed martin-
gale is | - |ps convergent. We have the following:

Proposition 2 Let (X, F,) be a martingale of M -integrable functions. Then,
forall A € U, F,, the set function u(A) = lim,, MfA X, is absolutely continuous
and has norm relatively compact range if and only if the martingale (X, Fy) is
|- |m Chauchy.

PROOF. First we prove the necessary part.

Since p has norm relatively compact range, by Hoffman-Jorgensen Theorem for
each € > 0 there exists a function H, : 2 — FE such that H, = Zle xila,, with
A; € U, F, and z; € F, so that

(T

Take ¢ > 0 and let H = H, 4, there exists mq for which A; € F,,, for i =
1,...,k. Since u(A) = lim,, MfA X,, there is mg such that Hp(A) — MfA Xn” <
¢ for n > mg. Let n,m > my.

:AEUn]:n} <e.



We have
sup{HMfA(X” - Xm)” : A € Unfn}

IN

sup{HMfA(Xn —H)H A€ Un]:n} +Sup{||MfA(H—Xm)H A€ Unfn}

IN

sup {|[ M [, X, — u(A)] : A € UpFo} +sup {||u(A) = M [, H| : A€ U Fo}
+ sup { | M [, Xon — u(A)]| : A € UpF} +sup {||u(A) — M [, H| : A€ U, T}
< f+5+5+5=-

Then | X,, — X;n|m < € for n,m > my.
Conversely choose € > 0 and find mg such that if n, m > mg then | X,, — X, |ar <
e. If pn(A) = M [, X,, for A € UF, then

lpn(A) — (A < [ Xy — Xin | <e.

So the sequence of measures p,, is Chauchy, therefore lim,, p, (A) = p(A) exists.
The functions X,, are M-integrable, then pu, has a norm relatively compact
range and since the convergence is uniform in A € U,F,, it follows that u is
absolutely continuous and has a norm relatively compact range. o

Proposition 1 and Proposition 2 hold also for M-integrable martingales indexed
by a directed set.
We will prove now two convergence theorems for a M-integrable martingale.

Theorem 7 Let (X, F,) be an uniformly integrable martingale of M -integrable
functions and suppose that there exists a weakly measurable function X : Q — E
such that f(X,) converges to f(X) a.s.. Then X, is |- |m convergent to X.

PROOF. Since (X,,), is uniformly integrable the set function v : U,F, — F
defined as
v(A4) = limM/ X,
n A

is an absolutely continuous measure of bounded variation and it can be extended
to the whole F to an absolutely continuous measure of bounded variation. Mo-
reover for each w ¢ N with P(N) =0, f(X,(w)) converges to f(X(w)) for each
f € E*. Hence it follows from [6] Theorem 4A that X is M-integrable and
v(2) = M [, X. Then for each A € U,F,

limM/Xn:M/X
n A A

and the assert follows from Proposition 1. O



Definition 4 A function X : Q@ — FE is called weakly asymptotically measu-
rable with respect to an increasing family (Fp)n of sub-o-algebras of F if there
exists an integer N such that for all n > N and for oall f € E* f(X) is Fp-
measurable.

Theorem 8 Let (X, F,) be an uniformly integrable martingale of M -integrable
functions and let T be a weak*-sequentially dense subset of E*. Assume that
there exists a weakly measurable function X : Q — E such that X is weakly
asymptotically measurable with respect to (F,) and such that, for each f € T,
f(X,) converges to f(X) a.s. (the null set depends on f). Then X, is |- |m
convergent to X.

PROOF. Since each McShane integrable function is Pettis integrable it follows
by [9] Theorem 1 that X is Pettis integrable, (X,) converges to X in the Pettis

norm and
M(A):limM/ Xn:P/X
n A A

for all A € U,F,. We want to prove that X is M-integrable. Since X is
weakly asymptotically measurable there exists N € IV such that X is weakly
JFn-measurable, then

E(X|Fy)=X (2)
and also
E(X|Fn) = XN. (3)
Then (2) and (3) implies that X = Xy a.s. and X is M-integrable. Therefore
the assert follows from Proposition 1. o
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