Fourteenth International Conference on Geometry, Integrability and Quantization June 8–13, 2012, Varna, Bulgaria Ivaïlo M. Mladenov, Andrei Ludu and Akira Yoshioka, Editors **Avangard Prima**, Sofia 2013, pp 116–125 doi: 10.7546/giq-14-2013-116-125

GREEN'S FUNCTION, WAVEFUNCTION AND WIGNER FUNCTION OF THE MIC-KEPLER PROBLEM

TOMOYO KANAZAWA

Department of Mathematics, Graduate School of Science, Tokyo University of Science, Kagurazaka1-3, Shinjuku-ku, Tokyo 162-8601, Japan

Abstract. The phase-space formulation of the nonrelativistic quantum mechanics is constructed on the basis of a deformation of the classical mechanics by the *-product. We have taken up the MIC-Kepler problem in which Iwai and Uwano have interpreted its wave-function as the cross section of complex line bundle associated with a principal fibre bundle in the conventional operator formalism. We show that its Green's function, which is derived from the *-exponential corresponds to unitary operator through the Weyl application, is equal to the infinite series that consists of its wavefunctions. Finally, we obtain its Wigner function.

1. Introduction

We come to the reluctant conclusion that in our previous paper [5] we obtained only a piece of the local expression of the Green's function for the MIC-Kepler problem. There (Theorem 12) we have presented two expressions denoted by $G_+(r_f, r_i; E)$ and $G_-(\tilde{r}_f, \tilde{r}_i; E)$ where $r = \tilde{r}$ means the position vector x in $\mathbb{R}^3 = \mathbb{R}^3 \setminus \{0\}$ i.e., r = (x, y, z). However, $G_-(\tilde{r}_f, \tilde{r}_i; E)$ is actually identical with $G_+(r_f, r_i; E)$ because the transition function is constant (independent of x) and therefore, despite the difference in appearance, τ_- is essentially the same local trivialization as τ_+ . This is the reason why $G_-(\tilde{r}_f, \tilde{r}_i; E)$ became equivalent to $G_+(r_f, r_i; E)$ in the case of iii). After that we have succeeded in obtaining the other piece of the local expression denoted by $G_-(x_f, x_i; E)$ via of finding another local trivialization τ_- which is transformed into τ_+ by the transition function of principal S^1 bundle varying with the position (more precisely, the longitudinal angle) of point x (see [4]). We have found, in addition, the wave-function of