Third International Conference on Geometry, Integrability and Quantization June 14–23, 2001, Varna, Bulgaria Ivaïlo M. Mladenov and Gregory L. Naber, Editors Coral Press, Sofia 2001, pp 315–317

INEQUALITIES AMONG THE NUMBER OF THE GENERATORS AND RELATIONS OF A KÄHLER GROUP

AZNIV KASPARIAN

Department of Mathematics and Informatics, Kliment Ohridski University 5 James Bourchier Blvd, 1126 Sofia, Bulgaria

> Abstract. The present note announces some inequalities on the number of the generators and relations of a Kähler group $\pi_1(X)$, involving the irregularity q(X), the Albanese dimension a(X) and the Albanese genera $g_k(X)$, $1 \le k \le a(X)$, of the corresponding compact Kähler manifold X. The principal ideas for their derivation are outlined and the proofs are postponed to be published elsewhere.

Let X be an irregular compact Kähler manifold, i. e., with an irregularity $q = q(X) := \dim_{\mathbb{C}} H^{1,0}(X) > 0$. The Albanese variety $Alb(X) = H^{1,0}(X)^*/H_1(X,\mathbb{Z})_{\text{free}}$ admits a holomorphic Albanese map $alb_X : X \to Alb(X)$, given by integration $alb_X(x)(\omega) := \int_{x_0}^x \omega$ of holomorphic (1,0)forms $\omega \in H^{1,0}(X)$ from a base point $x_0 \in X$ to $x \in X$. The complex rank of the Albanese map alb_X is called an Albanese dimension a = a(X) of X. A compact Kähler manifold Y is said to be Albanese general if $\dim_{\mathbb{C}} Y = a(Y) < q(Y)$. The surjective holomorphic maps $f_k : X \to Y_k$ of a compact Kähler manifold X onto Albanese general Y_k are referred to as Albanese general k-fibrations of X. The maximum irregularity $q(Y_k)$ of a base Y_k of an Albanese general k-fibration $f_k : X \to Y_k$ is called k-th Albanese genus of X and denoted by $g_k = g_k(X)$. The present note states lower bounds on the Betti numbers $b_i(\pi_1(X)) := rk_{\mathbb{Z}}H^i(\pi_1(X),\mathbb{Z})$ of the fundamental group $\pi_1(X)$, in terms of the irregularity q(X), the Albanese dimension a(X) and the Albanese general $g_k(X)$, $1 \le k \le a(X)$.

On the other hand, $b_i(\pi_1(X))$ are estimated above by the number of the generators s and the number of the relations r of $\pi_1(X)$ and, eventually, by the irregularity q(X), exploiting to this end few abstract results on the group cohomologies.