EFFECTIVE SOLUTIONS OF AN INTEGRABLE CASE OF THE HÉNON-HEILES SYSTEM

ANGEL ZHIVKOV and IOANNA MAKAVEEVA

Faculty of Mathematics and Informatics, Sofia University 5 James Bourchier Blvd, 1164 Sofia, Bulgaria

Abstract. We solve in two-dimensional theta functions the integrable case $\ddot{r} = -ar + 2zr$, $\ddot{z} = -bz + 6z^2 + r^2$ (a and b are constant parameters) of the generalized Hénon-Heiles system. The general solution depends on six arbitrary constants, called algebraic-geometric coordinates. Three of them are coordinates on the degree two (and dimension three) Siegel upper half-plane and define two-dimensional tori \mathbb{T}^2 . Each trajectory of the Hénon-Heiles system lies on certain torus \mathbb{T}^2 . Next two arbitrary constants define the initial position on \mathbb{T}^2 . The speed of the flow depends multiplicatively on the last arbitrary constant.

Consider a galaxy which gravitational potential U_{gr} is time-independent and has an axis of symmetry. We are interested in the motion of a star in such a potential field.

Let us introduce a system of cylindrical coordinates (r, ψ, z) : Oz is the axis of symmetry, z is the height of the star, $r := \sqrt{x^2 + y^2}$ is the distance between the star and the axis Oz, $\psi := \arctan \frac{y}{x}$ is the polar angle.

Two conservation laws (integrals) of the stellar motion are known:

$$\begin{split} I_1 &= U_{gr}(r,z) + \frac{m}{2} \left(\dot{r}^2 + r^2 \dot{\psi}^2 + \dot{z}^2 \right) = \text{total energy} \,, \\ I_2 &= m r^2 \dot{\psi} = \text{angular momentum of the star around } Oz \text{ axis} \,, \end{split}$$

m is the mass of the star, $\dot{t} = \frac{d}{dt}$ is the derivative with respect to the time *t*. With the help of the second integral I_2 we reduce the dynamics of the star on

454