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Abstract. We solve in two-dimensional theta functions the integrable
case r̈ = −ar+ 2zr, z̈ = −bz+ 6z2 + r2 (a and b are constant param-
eters) of the generalizied Hénon–Heiles system. The general solution
depends on six arbitrary constants, called algebraic–geometric coordi-
nates. Three of them are coordinates on the degree two (and dimension
three) Siegel upper half-plane and define two-dimensional tori T2. Each
trajectory of the Hénon–Heiles system lies on certain torus T

2. Next
two arbitrary constants define the initial position on T2. The speed of
the flow depends multiplicatively on the last arbitrary constant.

Consider a galaxy which gravitational potential Ugr is time-independent and
has an axis of symmetry. We are interested in the motion of a star in such a
potential field.

Let us introduce a system of cylindrical coordinates (r, ψ, z): Oz is the axis
of symmetry, z is the height of the star, r :=

√
x2 + y2 is the distance between

the star and the axis Oz, ψ := arctan y
x
is the polar angle.

Two conservation laws (integrals) of the stellar motion are known:

I1 = Ugr(r, z) +
m

2

(
ṙ2 + r2ψ̇2 + ż2

)
= total energy ,

I2 = mr2ψ̇ = angular momentum of the star around Oz axis ,

m is the mass of the star, ˙=
d
dt
is the derivative with respect to the time t.

With the help of the second integral I2 we reduce the dynamics of the star on
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