Fourth International Conference on Geometry, Integrability and Quantization June 6–15, 2002, Varna, Bulgaria Ivaïlo M. Mladenov and Gregory L. Naber, Editors Coral Press, Sofia 2003, pp 42–87

ENUMERATIVE GEOMETRY FOR COMPLEX GEODESICS ON QUASI-HYPERBOLIC 4-SPACES WITH CUSPS

ROLF-PETER HOLZAPFEL

Mathematisches Institut, Humboldt-Universität Berlin 26 Rudower Chaussée, 10099 Berlin, Germany

> Abstract. We introduce orbital functionals $\int \beta$ simultaneously for each commensurability class of orbital surfaces. They are realized on infinitely dimensional orbital divisor spaces spanned by (arithmetic-geodesic real 2-dimensional) orbital curves on any orbital surface. We discover infinitely many of them on each commensurability class of orbital Picard surfaces, which are real 4-spaces with cusps and negative constant Kähler-Einstein metric degenerated along an orbital cycle. For a suitable (Heegner) sequence $\int \mathbf{h}_N$, $N \in \mathbb{N}$, of them we investigate the corresponding formal orbital q-series $\sum_{N=0}^{\infty} (\int \mathbf{h}_N) q^N$. We show that after substitution $q = e^{2\pi i \tau}$ and application to arithmetic orbital curves $\hat{\mathbf{C}}$ on a fixed Picard surface class, the series $\sum_{N=0}^{\infty} (\int_{\hat{\mathbf{C}}} \mathbf{h}_N) e^{2\pi i \tau}$ define modular forms of well-determined fixed weight, level and Nebentypus. The proof needs a new orbital understanding of orbital heights introduced in [12] and Mumford–Fulton's rational intersection theory on singular surfaces in Riemann-Roch-Hirzebruch style. It has to be connected with Zeta and Theta functions of hermitian lines, indefinite quaternionic fields and of a matrix algebra along a research marathon over 75 years represented by Cogdell, Kudla, Hirzebruch, Zagier, Shimura, Schoeneberg and Hecke. Our aim is to open a door to an effective enumerative geometry for complex geodesics on orbital varieties with nice metrics.

1. Introduction

In the monograph [12] we defined orbital heights for orbital curves on orbital surfaces. In the most important cases of orbital hyperbolic surfaces (Picard surfaces), which are real 4-dimensional with cusps with negative constant cur-