Fourth International Conference on Geometry, Integrability and Quantization June 6–15, 2002, Varna, Bulgaria Ivaïlo M. Mladenov and Gregory L. Naber, Editors Coral Press, Sofia 2003, pp 284–295

g-SYMPLECTIC ORBITS AND A SOLUTION OF THE BRST CONSISTENCY CONDITION

RUDOLF SCHMID

Department of Mathematics, Emory University Atlanta, Georgia 30322, USA

Abstract. For any Lie algebra \mathfrak{g} we introduce the notion of \mathfrak{g} -symplectic structures and show that every orbit of a principal *G*-bundle carries a natural \mathfrak{g} -symplectic form and an associated momentum map induced by the Maurer–Cartan form on *G*. We apply this to the BRST bicomplex and show that the associated momentum map is a solution of the Wess–Zumino consistency condition for the anomaly.

1. Introduction

We first introduce the notion of Lie algebra g-valued symplectic structures and we show that every orbit of a principal G-bundle carries a natural g-symplectic form, which is exact and induced from the Maurer-Cartan form on the Lie group G. The G-action has a natural momentum map which is an invariant for any fundamental vector field. In order to give a solution to the BRST (Wess–Zumino) consistency condition, we generalize these results to infinite dimensional group \mathcal{G} of gauge transformations which acts on \mathfrak{g} -valued differential forms. On these orbit spaces we have the natural g-valued 1-form Θ , induced by the Maurer–Cartan form on the Lie group \mathcal{G} , and the corresponding momentum map. We summarize the classical BRST transformations described as coboundary operator of the Chevalley-Eilenberg complex of the infinite dimensional Lie algebra \mathfrak{g} of infinitesimal gauge transformations, [10–12]. Next we describe the chiral anomaly as element of the first cohomology of the local BRST complex [11, 12] using an induced representation of g on local forms. We consider the Wess-Zumino consistency condition as a problem in this BRST cohomology. To find a solution we combine the BRST bicomplex with the idea of g-valued symplectic geometry and momentum maps. We show that