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1. The Vortex I.'ilamellt I'low 

The "",.lex filament How i, a" evolution ~quation for 'race curves. given hy 

iJ-y if-, iP I 
iJl = f),,, X {h' = "B, 

Wh~l"., is ard~nglh, I< is h"n;,1 curvaluf~, and B i, Ihe bioormal. Thi, was pro
po",d in 1')(1,1 hy da Rio, (a ,tuMm of Levi-Civita) as a moMI for ,ell-induceci 

mot;OLl of "".'Ie> I;ne, ill Iln incomprc"ihle nuid. All iLltLiitive e<plllnl>t;orl ollhi' 
m",leI is Ihal wh~1l a VOriM lin~ bo"nJs, Ihe colllpr~"ioll of slr~mulines insilk Ilw 
b"nJ pu,h<;, Ihe vorlex lin~ in a dirOClioll p"fp"nJiculaf 10 lhe uo~"lalillg plalk', 
wilh velocity prolXlltionallO Ihe curvature. For example. circle, t,anslale with 
COrlWJnt veloe;l), (I;le I> ,mole I'in,,). Ho,,"e\'CI'. mo", plilnilr ;n;L ill I cLine, ;mmerl;

ately l",con", non-plana, un~'- thi' flow 

1.1. The Ha,imoto \Iap 

The vo~"< rtbmem 11m, i, 'eg'Jlllerl '" compleLely imegt""iJhle ilcc'm;.c or Hil,;
mOlo's Jiscovery [6 [ thai on~ ~all map wlllliollS of ( 1 j 10 wlUliono of Ih~ nolliilk"tf 
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Schrodinger equation. If the curvature f£ and torsion T of a solution of the vortex 
filament flow are packaged into a complex function of x and t 

q(x, t) = ~f£eie, () = J Tdx 

then q satisfies the focusing cubic nonlinear Schrodinger equation (NLS) 

iqt + qxx + 2qlql2 = o. (2) 

For example, a translating circle of radius r corresponds to a "plane wave solution" 
of the NLS, given by 

(3) 

As it can be seen here, the time dependence of the antiderivative () in (3) is not 
arbitrary. In order to get (2), one must choose the antiderivative of torsion to satisfy 

f£" 1 2 2 
()t = - + '2f£ - T . 

f£ 

This extra condition on () is compatible with ()x = T, because the torsion is a 
conserved density for the flow 

Tt = (~/ + ~f£2 - T2) x . 

Like the KdV, mKdV and sine-Gordon equations, the NLS is a completely inte
grable PDE. Why is this important? Because of the rich structure that such equa
tions have. 

1.2. Features of Completely Integrable PDE 

Hasimoto's discovery of the link between vortex filament flow and the NLS meant 
that filament flow can be regarded as a completely integrable PDE, in the same 
league as equations like KdV, mKdV and sine-Gordon. As a result, the filament 
flow enjoys the features common to "soliton" equations, such as: 

• It is completely integrable as a Hamiltonian flow on the appropriate function 
space l

, with an infinite sequence of conserved integrals 

J T dx, J f£2 dx, J f£2T dx, J (f£/)2 + f£2T2 - ~f£4 dx, 

and commuting flows 

'""'fto = T, '""'ftl = f£B, '""'ft2 = ~f£2T + f£'N + f£TB 

'""'ft3 = f£2TT + (2f£/ T + f£T/)N + (f£T2 - f£" - ~f£3)B, ... 

1 Usually, this is either the space of smooth closed curves of a fixed length, or balanced asymptotically 
linear curves [9]. 



Geometry and Topology of Finite-Gap Vortex Filaments 189 

(The ones given here were generated using recursion operators discovered 
by Langer and Perline [9].) 

• It possesses explicit soliton and multi-soliton solutions, and an even larger 
class of explicit solutions known as finite-gap solutions. 

Soliton solutions are, of course, often described as "solitary waves that move with
out changing shape or form". The analogue for the filament flow would be a curve 
that moves by rigid motion. These curves turn out to be elastic rod centerlines. 

1.3. Elastic Rod Centerlines 

Kida [8] showed that the curves that move by rigid motion (i.e., a combination 
of rotation and translation in IR3) are Kirchhoff elastic rod centerlines. From a 
geometric point of view, these may be defined as curves that are critical for a 
Lagrangian of the form 

.1"[1'] = Al J dx + A2 J T dx + A3 J ~f\;2 dx 

with respect to variations that preserve the second derivatives of l' at the endpoints. 
(Again, x is arclength.) For A2 = 0, these are Eulerian elastic curves. 

Langer and Singer [10] obtained expressions for the curvature, torsion, and po
sition of the curve in terms of elliptic functions and elliptic integrals. They also 
showed that the Euler-Lagrange equations imply that the vector field 

is the restriction to l' of a Killing field in IR3. Therefore, elastic rod centerlines 
evolve by rigid motion (together with a constant-speed slide along the curve) under 
the f\;B flow. 

Singer and the author [7] later showed that every torus knot type is realized by a 
one-parameter family of elastic rod centerlines. In fact, these centerlines fit into 
smooth families, which share a common rotational symmetry, and represent two 
complementary knot types, like the (2,5) and (3, -5) knot types shown among the 
examples above. We call such a smooth family a homotopy of closed elastic rod 
centerlines. 

These elastic rods are part of a larger class of vortex filament flow solutions that 
are derived from finite-gap solutions of the NLS. To understand how that works, 
we need to look at how to invert the Hasimoto map, i.e., producing a curve in IR3 
from its Hasimoto potential q(x, t). 
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One can check that 'Y is related to q via the Hasimoto map (3) if and only if (4) 
holds for a matrix solution \Ii of the linear system that is SU(2)-valued when A is 
real. 

Note that there are good reasons for evaluating (4) at a (real) value of A other 
than zero. First, if we evaluate at a nonzero Ao E JR, then we get a different 
curve from (4), whose Frenet curvature is the same and whose torsion differs by 
an additive constant. But if we evaluate at Ao E JR but also modify q by a gauge 
transformation 

q(x, t) = exp(i(ax - a2t))q(x - 2at, t), a = -2Ao 

then we get the same curve as we get from the Sym-Pohlmeyer formula using 
unmodified q and A = O. 

3. Floquet Spectrum 

One of our main interests is the topology (in particular, the knot type) of closed
loop solutions of the filament flow. If we are going to build such solutions using the 
inverse Hasimoto map, we must know how to obtain solutions that are smoothly 
closed. 

First, for a closed curve, the potential q obtained by the Hasimoto map will not 
necessarily be periodic. Granted, the curvature and torsion will be periodic, but 
the antiderivative of torsion in (3) may not be periodic. However, we can perform 
a gauge transformation to obtain a periodic potential, that corresponds to the given 
curve via the Sym-Pohlmeyer formula, albeit evaluated at a nonzero value of A. 

Going in the other direction, suppose we start with a periodic solution of NLS, 
say, with q(x + L) = q(x). (In this section we suppress dependence on time.) 
When does the Sym formula, evaluated at a suitable A-value, give a closed curve of 
length L? To answer this, we need to discuss the Floquet spectrum of the periodic 
potential q. 

This spectrum is a subset of the complex plane made up of two kinds of A-values. 
The periodic spectrum are the A-values for which a non-trivial solution of the 
AKNS system is L-periodic (or antiperiodic) in x, while the continuous spectrum 
consists of A-values for which the solutions are bounded as x ---+ ±oo. Both of 
these sets can be characterized in terms of the Floquet discriminant 

~(A) = trace (\Ii(x + L)\Ii(x)-l) 

which is the trace of the linear system's transfer matrix over one period L. Because 
the transfer matrix has determinant one, the solutions are periodic or antiperiodic 
exactly when the discriminant equals +2 or -2, respectively. Points of the peri
odic spectrum consist of simple points or multiple points, etc., according to their 
multiplicity as zeros of ~(A)2 - 4. 
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3.1. Example: Spectrum of the Circle 

For example, take a circle with length L = 7r / a. The continuous spectrum has 
exactly one spine, extending along the imaginary axis, with a simple point at each 
end, and a countable number of real double points: 

)( )( )( J )( )( )( 

If we take the circle as multiply-covered, i.e., L = m( 7r / a), then continuous spec
trum is the same, but double points (marked by X's here) proliferate along the real 
axis and along the spine: 

)( )( )( )( )()( W

t 
)( )( )( )( )( )( 

-ia 

In general, the Floquet spectrum is more complicated than this! 

3.2. Properties of the Floquet Spectrum 

The spectrum is symmetric under complex conjugation, and is unchanged by time 
evolution under the NLS. It contains the whole real line, plus (typically) spines 
branching off the real line, and possibly some disconnected bands. The bands end 
in simple points of the periodic spectrum, and multiple points can occur along the 
real axis or the bands/spines. So, a typical spectrum might look like this: 

Finite-gap potentials are those for which the spectrum has finitely many simple 
points. I will talk more about the construction of finite-gap solutions later, right 
now, to answer the question about closure conditions, we need to define one more 
object, the quasimomentum function. 
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3.3. Closure and the Spectrum 

For most A values, there will be two linearly independent eigenvectors for the 
transfer matrix. Using such vectors as initial conditions gives solutions to the linear 
system, called Bloch eigenfunctions, that are periodic up to a multiplicative factor. 
Those factors are known as Floquet multipliers, and the quasimomentum p(A) 
is -i times the logarithm of a Floquet multiplier. Because there are, in general, 
two Floquet multipliers for each A, the quasimomentum is defined on a Riemann 
surface L: that double-covers the complex A-plane. (The covering is branched at 
the simple points.) Because eip(A) and its reciprocal are eigenvalues of the transfer 
matrix, then ~(A) = 2 cos (p(A)). 

Theorem (Grinevich and Schmidt [4]). '"Y is smoothly closed at length L if and 
only if Ao is a real double point that is a zero of the quasimomentum differential 
dp, i.e., 

~(Ao) = ±2, dPI = 0, 
dA A=Ao 

Ao E IR. 

One typically achieves this by picking Ao to be a double point that is also at the 
base of a spine, i.e. where a spine of the continuous spectrum intersects the real 
axis. 

4. Constructing Finite-Gap Solutions 

For a finite-gap potential, the Riemann surface L: has finite genus. Conversely, we 
can begin with a finite collection of pairs of complex conjugate branch points and 
construct a finite-gap solution of NLS. The data necessary for this construction are 
a hyperelliptic curve L: of genus g, with complex-conjugate branch points, and a 
nonspecial divisor D on L: that satisfies a certain reality condition (see [2] or [3] 
for details). The branch points will become the simple points for the spectrum of 
the resulting NLS solution, which has the form 

.. B(iVx+iWt-D+r) 
q(x, t) = exp( -lEx + lNt) Be . ). 

lVX+lWt-D 

Here, scalars E, N E IR and vectors V, W E IR9 and r E C9 are determined by 
the periods of certain Abelian differentials on L:, and the purely imaginary vector 
D E C9 is computed using the divisor. 

Formulas for finite-gap NLS solutions were first obtained by Its and Kotlyarov. 
Later, these solutions were re-interpreted by Krichever in terms of Baker-Akheizer 
functions on a complex curve (see [2] for references). There are also formulas 
for the Bloch eigenfunctions, and substituting these into the Sym formula yields 
formulas for components of the curve '"Y in IR3 (again, see [3] for details). 
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6. Symmetric Spectra 

Here, we suppose the branch points of L: are symmetric about the origin of the 
complex plane, as shown here for genus two. 
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(The diagram shows the branch points, along with branch cuts and a typical ho
mology basis.) 

Using the extra symmetry, we obtain the following 

Theorem ([3]). If 9 =2 or 3, and I'(x, t) is constructed at Ao 
periodically planar, i.e. planar at regular intervals in time. 

0, then l' is 

Moreover, the curves are different planar times are congruent, giving breather 
solutions for the filament flow. (For curves constructed using the Sym-Pohlmeyer 
formula at Ao i- 0, "constant torsion" replaces "planar" in the theorem.) 

The above theorem is a corollary of a result that works in any genus, but involves 
an extra condition on the divisor which is vacuous in low genus. (So, higher-genus 
solutions may be periodically planar, but it depends on the divisor.) The proof 
is basically a calculation showing that, at certain times, the potential is a constant 
multiple of its complex conjugate. The calculation uses special algebraic properties 
of the ingredients for finite-gap solutions that arise when the Riemann surface has 
an extra automorphism induced by the symmetry (see [3] for details). 

Theorem ([3]). If 9 = 2 the curve has a fixed plane ofrefiection symmetry. 

This typically means that the filament will have persistent self-intersections as it 
evolves. We also have observed experimentally that, between the planar times, 
these genus two solutions lie on spheres. 

The following examples illustrate the phenomena described in the above theorems. 
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A couple of years ago, we realized that we could rig these isoperiodic deformations 
so that, if you start with one of the CI:'S being a double point (i.e., the quasimomen
tum is ± 1 there), then it remains a double point, provided that the corresponding 
control is set to zero. Next, I will describe how this works in the elastic rod homo
topy. 

7.1. Collapse onto the Unit Circle 

Suppose the genus is one, and Ao = Cl:2 gives a closed curve. Then setting control 
C2 = 0 allows us to deform the spectrum while keeping the curve in IR3 closed. 
Since there is only one control function, we can reparametrize so that it is a con
stant. If we choose C1 = -1, we hit a singularity in finite deformation time, when 
the pair (>\1, )..1) collides with Cl:1 on the real axis. 

We can reverse this process if we take C1 = 1, and expand the trajectory coming 
out of the real double point as a power series in parameter 1l = -/E,. 
This idea can be applied to arbitrary genus spectra that are "close" to that of a 
multiply-covered circle. If each complex conjugate pair of branch points is col
lapsed onto the real axis via isoperiodic deformations, then the components of the 
frequency vector before deformation can be calculated in terms of the residues of 

the limiting differentials, giving Vk = ±2lim J 1 + CI:~, where Cl:k limits onto a 
double point belonging to the periodic spectrum of a multiply-covered circle, and 
the sign of Vk is the same as the sign of lim Cl:k. 

By reversing this collapse, we can construct a finite-gap solution with specified 
values for the frequencies, by successively opening up the appropriate double 
points for the multiply-covered circle. Namely, opening up the double point Cl:k = 

±J(m/n)2 - 1, which is in the spectrum for the n-times covered circle, gives 
Vk = ±2m/n. 

7.2. Deforming the Circle to a Cable Knot 

We have observed experimentally that, beginning with a multiply-covered circle 
and repeatedly opening up a real double point (using a closure-preserving, isope
riodic deformation) to a pair of new branch points a small distance away from the 
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