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Abstract. Let (M,ω) be a closed symplectic2n-dimensional manifold. Ac-
cording to the well-known result by Donaldson [5] there exist2m-dimensio-
nal symplectic submanifolds(V 2m, ω) of (M,ω), 1 ≤ m ≤ n − 1, with
(m − 1)-equivalent inclusions. In this paper, we have found a relation be-
tween the flux group and the kernel of the Lefschetz map. We have present
also some properties of the flux groups for all symplectic2m-submanifolds
(V 2m, ω) where2 ≤ m ≤ n− 1.

1. Introduction

Let (M,ω) be a compact symplectic manifold andSymp0(M) denote the identity
component of the symplectomorphism groupSymp(M) of (M,ω). Recall that the
flux homomorphism

Fω : π1(Symp0(M)) → H1(M, R)

can be defined as follows. For an elementφ ∈ π1(Symp0(M)) and any homology
classα ∈ H1(M, R) set

(Fω(φ), α) = (ω, φtα)
whereφtα denotes the trace of a loopα under the isotopy{φt} representingφ and
(·, ·) is the natural pairing. It is well known thatφ is represented by a Hamiltonian
loop if and only ifFω(φ) = 0. Define the flux groupΓM of M by the image of the
flux homomorphism, i.e.,

ΓM = im{Fω : π1(Symp0(M)) → H1(M, R)} ⊂ H1(M, R).

The importance of this notion is due to the fact that the Hamiltonian diffeomor-
phism groupHam(M) is closed inSymp0(M) if and only if ΓM is a discrete
subgroup ofH1(M, R). The statement thatΓM is discrete is known as the flux
conjecture. Then we obtain a relation between the flux groupΓM of M and
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