Seventh International Conference on Geometry, Integrability and Quantization June 2–10, 2005, Varna, Bulgaria Ivaïlo M. Mladenov and Manuel de León, Editors SOFTEX, Sofia 2006, pp 89–97

FLUX CONJECTURE ON SYMPLECTIC SUBMANIFOLDS

YONG SEUNG CHO and MYUNG IM LIM

Department of Mathematics, Ehwa Women's University Seoul 120-750, Korea

Abstract. Let (M, ω) be a closed symplectic 2n-dimensional manifold. According to the well-known result by Donaldson [5] there exist 2m-dimensional symplectic submanifolds (V^{2m}, ω) of (M, ω) , $1 \le m \le n-1$, with (m-1)-equivalent inclusions. In this paper, we have found a relation between the flux group and the kernel of the Lefschetz map. We have present also some properties of the flux groups for all symplectic 2m-submanifolds (V^{2m}, ω) where $2 \le m \le n-1$.

1. Introduction

Let (M, ω) be a compact symplectic manifold and $\operatorname{Symp}_0(M)$ denote the identity component of the symplectomorphism group $\operatorname{Symp}(M)$ of (M, ω) . Recall that the flux homomorphism

$$F_{\omega}: \pi_1(\operatorname{Symp}_0(M)) \to H^1(M, \mathbb{R})$$

can be defined as follows. For an element $\phi \in \pi_1(\operatorname{Symp}_0(M))$ and any homology class $\alpha \in H_1(M, \mathbb{R})$ set

$$(F_{\omega}(\phi), \alpha) = (\omega, \phi_t \alpha)$$

where $\phi_t \alpha$ denotes the trace of a loop α under the isotopy $\{\phi_t\}$ representing ϕ and (\cdot, \cdot) is the natural pairing. It is well known that ϕ is represented by a Hamiltonian loop if and only if $F_{\omega}(\phi) = 0$. Define the flux group Γ_M of M by the image of the flux homomorphism, i.e.,

$$\Gamma_M = \operatorname{im}\{F_\omega : \pi_1(\operatorname{Symp}_0(M)) \to H^1(M, \mathbb{R})\} \subset H^1(M, \mathbb{R}).$$

The importance of this notion is due to the fact that the Hamiltonian diffeomorphism group $\operatorname{Ham}(M)$ is closed in $\operatorname{Symp}_0(M)$ if and only if Γ_M is a discrete subgroup of $H^1(M, \mathbb{R})$. The statement that Γ_M is discrete is known as the flux conjecture. Then we obtain a relation between the flux group Γ_M of M and