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We compute two invariants of topological conjugacy, the upper and lower limits of the inverse of
Boshernitzan’snen, whereen is the smallest measure of a cylinder of lengthn, for three families
of symbolic systems, the natural codings of rotations and three-interval exchanges and the Arnoux-
Rauzy systems. The sets of values of these invariants for a given family of systems generalize the
Lagrange spectrum, which is what we get for the family of rotations with the upper limit of 1

nen
.

TheLagrange spectrumis the set of finite values ofL(α) for all irrational numbersα , whereL(α)
is the largest constantc such that|α − p

q | ≤ 1
cq2 for infinitely many integersp andq. It was recently

remarked that this arithmetic definition can be replaced by adefinition involving symbolic dynamics
through the Sturmian sequences, which arise from natural coding of the irrational rotations of angleα
by the partition{[0,1−α [, [1−α ,1[}. Namely, as we prove in Theorem 2.1 below, which was never
written before,L(α) is also the upper limit of the inverse of the so-calledBoshernitzan’s nen, whereen

is the smallest (Lebesgue) measure of the cylinders of length n.
Thus, for any symbolic dynamical system, it is interesting to compute two new invariants of topo-

logical conjugacy, limsupn→+∞
1

nen
and liminfn→+∞

1
nen

. Moreover, for a given family of systems, the set
of all values of these invariants can be called theupper, resp.lower BL(for Boshernitzan and Lagrange)
spectrum. In this paper, we compute these spectra for three families of systems: the irrational rotations
(seen as two-interval exchanges), the three-interval exchanges, both coded by the natural partition of
the interval generated by the discontinuities, and the Arnoux-Rauzy systems. In each of these cases,
we use an induction (or renormalization) process, which is respectively a variant of the Euclid algoritm,
the self-dual induction of [14], and the natural one defined in [3]. A multiplicative form of the process
yields explicit formulas for our invariants, and these formulas are then exploited in each case by using
the underlying algorithm of approximation of real numbers by rationals, which is respectively the clas-
sical continued fraction expansion, an extension of a semi-regular continued fraction expansion, and the
algorithm which motivated the study of Arnoux-Rauzy systems.

What we get in the end is a first partial description of the five new sets we introduced beside the
classical Lagrange spectrum. For rotations, the lower BL spectrum is a compact set starting with 1
and an interval (at least) as far as 1,03..., ending at 1,38..., with gaps, above an accumulation point at
1,23.... For three-interval exchanges, the upper BL spectrum looks, perhaps deceptively, like two times
the Lagrange spectrum, starting at 2

√
5 with gaps and an accumulation point at 6, and ending with an

interval (at least) from 14,8... to infinity; the lower BL spectrum is fully determined and is none other
than the interval[2,+∞]. For Arnoux-Rauzy systems, we deal with cubic numbers and our knowledge
is only embryonic: the upper BL spectrum starts at 8,44..., with gaps, and ends at infinity, the lower BL
spectrum starts at 2 and ends at infinity.

As a consequence, we get new uniquely ergodic systems for which nen does not tend to zero whenn
tends to infinity, showing that Boshernitzan’s criterion isnot a necessary condition; their existence in the
family of three-interval exchanges was known but a proof wasnever written, while the examples in the
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family of Arnoux-Rauzy systems are new, and surprising as these systems are often thought to behave
like rotations, see the discussion at the end of Section 4.

1 Preliminaries

For a full study of the Lagrange spectrum, we refer the readerto the monograph [12]; the following
definition is equivalent to the one given in the introductionof the present paper.

Definition 1.1. TheLagrange spectrumis the set of all finite values of

limsup
k→+∞

1
qk |qkα − pk|

,

for α irrational, the pn
qn

being the convergents ofα for the Euclid algorithm.

Let us just recall that the Lagrange spectrum is a closed set,its lowest elements are
√

5, then 2
√

2,
and discrete values up to a first accumulation point at 3; above 3, its structure is more complicated and
not yet fully known, but it contains every real number above avalue (which is known to be optimal) near
4,52...

Note that to get theMarkov spectrum, we replace the upper limit by a supremum in the above defini-
tion; the Markov spectrum will not be used in the present paper.

Definition 1.2. Thesymbolic dynamical systemassociated to a language L is the one-sided shift

S(x0x1x2...) = x1x2...

on the subset XL of A IN made with the infinite sequences such that for every r< s, xr ...xs is in L.
For a word w= w1...wr in L, thecylinder [w] is the set{x∈ XL;x0 = w1, ...,xr−1 = wr}.
(XL,S) is minimal if L is uniformly recurrent.
(XL,S) is uniquely ergodicif there is one S-invariant probability measureµ ; then thefrequencyof the
word w is the measureµ [w].
Definition 1.3. For a transformation T defined on a set X, partitioned into X1, ... Xr , and a point x in X,
its trajectoryis the infinite sequence(xn)n∈IN defined by xn = i if T nx falls into Xi, 1≤ i ≤ r.
The language L(T) is the set of all finite factors of its trajectories.
Thecodingof (X,T) by the partition{X1, ...Xr} is the symbolic dynamical system(XL(T),S).

In [7] M. Boshernitzan introduced the following quantity:

Definition 1.4. Let (XL,S) be a minimal symbolic system. Ifµ is an S-invariant probability measure, for
each natural integer n, we denote by en(µ) the smallest positive frequency of the words of length n of L.
If µ is the only invariant probability measure, en(µ) is simply denoted by en.

After partial results in [7] and [17], it was proved in [8] that whenever, for some invariant probability
measureµ , nen(µ) does not tend to 0 whenn tends to+∞, then the system(XL,S) is uniquely ergodic.
This sufficient condition for unique ergodicity has been known since [17] asBoshernitzan’s citerion.

In the present paper, all systems considered are uniquely ergodic, and we consider the quantitynen

for its own sake. Thus we define

Definition 1.5.

B = limsup
n→+∞

1
nen

, B
′ = lim inf

n→+∞

1
nen

.
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Proposition 1.1. B andB′ are invariants of topological conjugacy among uniquely ergodic symbolic
dynamical systems.

A first crude estimate can be given using the complexity function,

Lemma 1.2. B ≥ limsupn→+∞
pL(n)

n , B′ ≥ lim inf n→+∞
pL(n)

n .

This is enough to show that Boshernitzan’s criterion is not anecessary condition: there are uniquely
ergodic symbolic systems of exponential complexity [15], and thus withnen → 0, see also the discussion
at the end of Section 4. But of course the above lemma implies that the study of these invariants is inter-
esting only for systems of linear complexity, for which the question of necessity can be asked again.

In view of Theorem 2.2 below, we are led to define the followingsets:

Definition 1.6. For a family of uniquely ergodic symbolic dynamical systems(Xa,S), a∈ F , theupper
BL spectrumis the set of all values ofB taken by the systems in this family, and thelower BL spectrum
is the set of all values ofB′ taken by the systems in this family.

2 Rotations and the dynamical definition of the Lagrange spectrum

Surely there is nothing new to find about irrational rotations? The computation ofB in Thorem 2.1 be-
low, and the subsequent Theorem 2.2, which was the main motivation for the present paper, were known
to P. Hubert and T. Monteil (private communications), but never written to our knowledge. The quantity
1

B′ was indeed computed in [11] (see also [5]) as, for irrationalrotations, it is equal to another invariant
of topological conjugacy, thecovering number by intervals[11], which involves covering the space by
Rokhlin towers; the spectrum of its possible values is the object of a question in [11] and in [9], to which
Theorem 2.3 below gives a first (to our knowledge), though belated and partial, answer.

Let α <
1
2 be an irrational number; the rotations withα >

1
2 are treated in a similar way and all

the results in this section from Theorem 2.1 onwards remain valid; the rotation of angleα , is also the
two-interval exchange defined by

Tx=

{

x+α if x∈ X1 = [0,1−α [

x−1+α if x∈ X2 = [1−α ,1[.

With this definition, a rotation admits a natural coding, by the partition ofX = [0,1[ into X1 andX2.
ThenL(T) has complexityn+1 and the trajectories are calledSturmian sequences. Irrational rotations
are minimal and uniquely ergodic.

To get Theorem 2.1 below, we rely on a computation of both frequencies and lengths of factors of
Sturmian sequences, which was done in [4], but which we provide again by using a different version of
the classic Euclid algorithm, making the computations quicker and ready to be generalized.

Theorem 2.1. For a rotation of irrational angleα = [0,b1, .., .bn, ...], if we define vk = [0,bk,bk−1, ...b1]
and tk = [0,bk+1,bk+2, ...] then

B = limsup
k→+∞

(

1
vk

+ tk

)

= limsup
k→+∞

(bk+vk−1+ tk) , B
′ = lim inf

k→+∞
(1+ tkvk) .



S. Ferenczi 125

Theorem 2.2. The upper BL spectrum of the family of rotations is the union of the Lagrange spectrum
and+∞.

As for the lower LB spectrum, it seems to have never been studied to our knowledge, and its study
looks to be of the same level of difficulty as for the Lagrange spectrum. We give now some of the first
results about it. Note thatB′ is not the lower limit of 1

qk|qkα−pk| and thus is not directly linked to the
quality of the approximation ofα by rationals.
Theorem 2.3.The lower BL spectrum of the family of rotations has1 as its smallest element, withB′= 1
if and only if the angle has unbounded partial quotients. It is a closed set.
Its two largest elements are5−

√
5

2 = 1,38196... and3−
√

3= 1,26794..., and there is no other element
above5

4.
It contains an accumulation point equal to

√
5−1= 1,2360...

It contains the interval[1,1+ 4
83+18

√
2
= 1,03688...].

The third highest number in this spectrum is16−4
√

6
5 = 1,2404..., as can be seen with longer compu-

tations; the point
√

5−1 is the highest accumulation point, but to prove it requiresa machinery similar
to the one used to prove Theorem 5 in Chapter 1 of [12].

3 Three-interval exchanges

3.1 The transformations

Definition 3.1. Given two numbers0< α , 0< β with α +β < 1, we define athree-interval exchange
on X= [0,1[ by

Tx=











x+1−α if x ∈ X1 = [0,α [

x+1−2α −β if x ∈ X2 = [α ,α +β [
x−α −β if x ∈ X3 = [α +β ,1[.

Throughout this section, we ask thatα andβ satisfy thei.d.o.c conditionof Keane, which means in
that case that they do not satisfy any rational relation of the formspα +qβ = p−q, pα+qβ = p−q+1,
or pα +qβ = p−q−1, for p andq integers.

The pointsα andα +β are the discontinuities ofT, while β1 = 1−α −β andβ2 = 1−α are the
discontinuities ofT−1. The i.d.o.c. condition ensures that the negative orbits ofthe discontinuities ofT
are infinite and have an empty intersection (it is its original definition; see [13] for the equivalence with
the one stated here).

A three-interval exchange admits a natural coding, by the partition of X into X1,X2,X3. Under the
i.d.o.c. condition,(X,T) is minimal and uniquely ergodic andL(T) has complexity 2n+1.

Throughout this section, we add the conditions 0< α <
1
2, and 2α + β > 1; they ensure that the

induction process described below does not have an irregular behaviour in the early stages: as is shown
in [14], their absence modifies only a finite number of stages,and all the results in this section from
Theorem 3.1 onwards remain valid without these extra conditions.

Theorem 3.1. The smallest element in the upper BL spectrum of three-interval exchange transforma-
tions, and the only one below12+29

√
3

13 = 4,786..., is 2
√

5= 4,47....
The spectrum is a closed set and contains an accumulation point equal to6.



126 Generalizations of Lagrange spectrum

The values ofB between 2
√

5 and 6 were found only by trial and error; the second value is very
likely to be 4

√
2 = 5,65...,. The third value we found is2

√
2600
17 = 5,9988..., and the fourth one is

4
√

209306
305 = 5,999996....
Thus the first, second, third, fourth smallest element we found in the upper BL spectrum of three-

interval exchange transformations is respectively twice the first, second, sixth and twelfth smallest ele-
ment in the Lagrange spectrum. Though of course we might havemissed some values, it seems likely
thatthe upper BL spectrum of three-interval exchanges below6 is strictly included in twice the Lagrange
spectrum below3; thus we conjecture that 6is the lowest accumulation point of our spectrum.

Theorem 3.2. The upper BL spectrum of the family of three-interval exchanges contains the interval
[12+2

√
2= 14,828...,+∞].

Theorem 3.3. The lower BL spectrum of the family of three-interval exchanges is the interval[2,+∞].

Thus for some uniquely ergodic three-interval exchange transformations we havenen → 0 whenn
tends to infinity; this result, and its consequence that Boshernitzan’s criterion is not a necessary condition
in this family of systems, are stated without proof in [18]. Note that the covering number by intervals
(see the opening of Section 2 above) of a three-interval exchange is shown in [5] to be the same as for
the inducing rotation, and thus is not equal to1

B′ , in contrast with the case of rotations.

4 Arnoux-Rauzy systems

TheArnoux-Rauzy systemsare defined in [3] as the minimal symbolic systems on the alphabet{1,2,3}
such that the complexity of the language is 2n+ 1 for all n, and, for alln, there are one right special
and one left special word. Then [3] proceeds to give a constructive (additive) algorithm to generate them
with three families of words, built with three rules denotedby a, b andc; [10] gives a multiplicative
version of this construction, which we take here as a definition, valid up to permutations of{1,2,3}: the
kn are the number of consecutive times a given rule is used, while theni > 1 mark the times where three
consecutive rules are all different, such as, up to permutations of{a,b,c}, rule a usedkni−1 times, then
rule b usedkni times, then rulec usedkni+1 times.

Definition 4.1. Given two infinite sequences of integers kn ≥ 1, n ≥ 1, and n1 < n2... < ni < ... the
Arnoux-Rauzy system(XL,S) defined by them is the symbolic system associated to the language L of
all factors of(Hn)n∈IN , where the three words Hn, Gn, Jn are built from H0 = 1, G0 = 2, J0 = 3 by two
families of rules:

• if n+1= ni for some i, Hn+1 = GnHkn+1
n , Gn+1 = JnHkn+1

n , Jn+1 = Hn;

• otherwise, Hn+1 = GnHkn+1
n , Gn+1 = Hn, Jn+1 = JnHkn+1

n .

Every Arnoux-Rauzy system is minimal [3] and uniquely ergodic (by [6] because the complexity
is 2n+1). Though they are defined as symbolic systems, they have also geometric models, see [2] [1]
[3][16]: every Arnoux-Rauzy system is a coding of a six-interval exchange on the circle, and some of
them are codings of rotations of the 2-torus.

Proposition 4.1. The upper BL spectrum of the family of Arnoux-Rauzy systems contains+∞, which is
reached if and only if the kn, n∈ IN, or the ni+1−ni , i ≥ 1, are unbounded. Its smallest element, and the
only one below181

21 = 8,619..., is reached for theTribonacci systemwhere ni = i for all i ≥ 1 and kn = 1
for all n ≥ 1; for this system, if y= 1,8392... is the root bigger than1 of the polynomial X3−X2−X−1,
thenB = 2y2+ 4y

y2+1 = 8,4445....
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Theorem 4.2. The smallest element in the lower BL spectrum of the family ofArnoux-Rauzy systems
is 2, and the largest is+∞. Every integer greater or equal to2 is in the lower BL spectrum, and is an
accumulation point, as is+∞.

Thus we have a new, and very simple, family of counter-examples to the necessity of Boshernitzan’s
criterion.

Of course, there are other values in the lower spectrum than those in Theorem 4.2, and we conjecture
that the lower BL spectrum of the family of Arnoux-Rauzy systems is the interval[2,+∞].

The Arnoux-Rauzy systems raise questions about rotations of the 2-torus, and we may ask what could
be the BL spectra for that family of systems, but the problem is that they do not admit any coding which
may be called natural. If we code a rotation of the 2-torus with the Cartesian product of two partitions of
the 1-torus, then the complexity is quadratic and allB andB′ are infinite by Lemma 1.2, which gives
another trivial counter-example to the necessity of Boshernitzan’s criterion, but one can object that it
just means the coding is not appropriate. The Arnoux-Rauzy systems were devised to provide codings
with linear complexity for rotations of the 2-torus, but this was succesful only in a limited number of
cases. Still, if we consider these cases, the tentative lower BL spectrum of the family of rotations of the
2-torus seems to be quite different from the lower BL spectrum of rotations of the 1-torus: if we take an
Arnoux-Rauzy system withni = i and constantkn = k, it is a coding of a rotation of the 2-torus by [1],
and these give arbitrarily high values forB′; if ni = i andkn grows slowly (for examplekn ≤ 1

15n), we get
an infiniteB′ while the Arnoux-Rauzy system is shown in [10] to have two continuous eigenfunctions,
and is still conjectured to be a coding of a rotation of the 2-torus.
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