Constructing Premaximal Binary Cube-free Words of Any Level

Elena A. Petrova Ural Federal University Ekaterinburg, Russia captain@akado-ural.ru Arseny M. Shur Ural Federal University Ekaterinburg, Russia arseny.shur@usu.ru

We study the structure of the language of binary cube-free words. Namely, we are interested in the cube-free words that cannot be infinitely extended preserving cube-freeness. We show the existence of such words with arbitrarily long finite extensions, both to one side and to both sides.

1 Introduction

The study of repetition-free words and languages remains quite popular in combinatorics of words: lots of interesting and challenging problems are still open. The most popular repetition-free binary languages are the *cube-free* language CF and the *overlap-free* language OF. The language CF is much bigger and has much more complicated structure. For example, the number of overlap-free binary words grows only polynomially with the length [8], while the language of cube-free words has exponential growth [3]. The most accurate bounds for the growth of OF is given in [6] and for the growth of CF in [13]. Further, there is essentially unique nontrivial morphism preserving OF [10], while there are uniform morphisms of any length preserving CF [5]. The sets of two-sided infinite overlap-free and cube-free binary words also have quite different structure, see [12].

Any repetition-free language can be viewed as a poset with respect to prefix, suffix, or factor order. In case of prefix [suffix] order, the diagram of such a poset is a tree; each node generates a subtree and is a common prefix [respectively, suffix] of its descendants. The following questions arise naturally. *Does a given word generate finite or infinite subtree? Are the subtrees generated by two given words isomorphic? Can words generate arbitrarily large finite subtrees?* For some power-free languages, the decidability of the first question was proved in [4] as a corollary of interesting structural properties. The third question for ternary square-free words constitutes Problem 1.10.9 of [1]. For all *k*th power-free languages, it was shown in [2] that the subtree generated by any word has at least one leaf. Note that considering the factor order instead of the prefix or the suffix one, we get a more general acyclic graph instead of a tree, but still can ask the same questions about the structure of this graph. For the language OF, all these questions were answered in [11, 14], but almost nothing is known about the same questions for CF.

In this paper, we answer the third question for the language CF in the affirmative. Namely, we construct cube-free words that generate subtrees of any prescribed depth and then extend this result for the subgraphs of the diagram of factor order.

2 Preliminaries

Let us recall necessary notation and definitions. We consider finite and infinite words over the binary alphabet $\Sigma = \{a, b\}$. If *x* is a letter, then \bar{x} denotes the other letter. By default, "word" means a finite word.

Words are denoted by uppercase characters (to denote one-sided infinite words, we add the subcsript $_{\infty}$ at the corresponding side). We write λ for the *empty word*, and |W| for the length of the word W. The letters of nonempty finite and right-infinite words are numbered from 1; thus, $W = W(1)W(2)\cdots W(|W|)$. The letters of left-infinite words are numbered by *all nonnegative integers*, starting from the right.

We use standard definitions of factors, prefixes, and suffixes of a word. The factor $W(i) \cdots W(j)$ is written as $W(i \dots j)$. A positive integer $p \le |W|$ is a *period* of a word W if W(i) = W(i+p) for all $i \in \{1, \dots, |W|-p\}$. The minimal period of W is denoted by per(W). The *exponent* of a word is the ratio between its length and its minimal period: exp(W) = |W|/per(W). Words of exponent 2 and 3 are called squares and cubes, respectively. The *local exponent* of a word is the number $lexp(W) = sup\{exp(V)|V \text{ is a factor of } W\}$. Periodic words possess the *interaction property* expressed by the textbook Fine and Wilf theorem: if a word U has periods p and q, and $|U| \ge p + q - gcd(p,q)$, then U has the period gcd(p,q).

A word *W* is β -free [β^+ -free] if lexp(*W*) < β [respectively, lexp(*W*) $\leq \beta$]. The 3-free words are called *cube-free*, and the 2⁺-free words are *overlap-free*. The language of all cube-free [overlap-free] words over Σ is denoted by CF [respectively, OF]. A morphism $f : \Sigma^+ \to \Sigma^+$ avoids an exponent β if the condition lexp(*U*) < β implies lexp(f(U)) < β for any word *U*. The following theorem allowes one to check cube-freeness of a morphism over the binary alphabet.

Theorem 1 ([9]). A morphism $f : \Sigma^+ \to \Sigma^+$ is cube-free if and only if the word f(aabbabbabbaabaabaababb) is cube-free.

The *Thue–Morse morphism* θ is defined over Σ^+ by the rules $\theta(a) = ab$, $\theta(b) = ba$. The words

$$T_n^a = \theta^n(a), \ T_n^b = \theta^n(b) \ (n \ge 0)$$

are called *Thue–Morse blocks* or simply *n*-blocks. From the definition it follows that $T_{n+1}^x = T_n^x T_n^{\bar{x}}$. Hence, the sequences $\{T_n^a\}$ and $\{T_n^b\}$ have "limits", which are right-infinite *Thue-Morse words* T_{∞}^a and T_{∞}^b , respectively. We also consider the reversal ${}_{\infty}^a T$ of T_{∞}^a . The factors of Thue-Morse words are *Thue-Morse factors*; the set of all these factors is denoted by TM. Note that any word in TM can be written as $W = xQ_1 \cdots Q_n y$, where $x, y \in \Sigma \cup \{\lambda\}, Q_1, \ldots, Q_n \in \{ba, ab\}$. It is known since Thue [15] that TM \subset OF.

Let $L \subset \Sigma^*$ and $W \in L$. Any word $U \in \Sigma^*$ such that $UW \in L$ is called a *left context* of W in L. The word W is *left maximal* [*left premaximal*] if it has no nonempty left contexts [respectively, finitely many left contexts]. The *level* of the left premaximal word W is the length of its longest left context; thus, left maximal words are of level 0. The right counterparts of the above notions are defined in a symmetric way. We say that a word is *maximal* [*premaximal*] if it is both left and right maximal [respectively, premaximal]. The *level* of a premaximal word W is the pair $(n,k) \in \mathbb{N}$ such that n and k are the length of the longest left context of W and the length of its longest right context, respectively.

In particular, a word $W \in CF$ is maximal if by adding any of the two letters on the left or on the right we obtain a cube. The word *aabaabaa* is an example of such a word.

The aim of this paper is to prove the following theorems:

Theorem 2. In CF, there exist left premaximal words of any level $n \in \mathbb{N}_0$. **Theorem 3.** In CF, there exist premaximal words of any level $(n,k) \in \mathbb{N}_0^2$.

3 Construction of premaximal words

Theorem 2 is proved by exhibiting a series of left premaximal words, containing words of any level. The series is constructed in two steps:

- 1. building an auxiliary series $\{W_n\}_0^\infty$ such that each word W_n has, up to one easily handled exception, a unique left context of any length $\leq n$;
- 2. completing the word W_n to a left premaximal word \overline{W}_n .

If a word $W \in CF$ has a unique left context of length n, say U, and two left contexts of length n+1, then we say that U is the *fixed* left context of W (see the picture below).

Example 1. Let W = aabaaba. Since $aW = aaa \cdots$, $abW = (aba)^3$, but aabbW, $babbW \in CF$, we see that the fixed left context of the word W equals abb.

Now let us explain step 1. We build the series $\{W_n\}_0^\infty$ inductively, one word per iteration, in a way that the fixed left context X_n of the word W_n is of length $\ge n$ (we will discuss the mentioned exception at the moment of its appearance). We put $W_0 = aabaaba$ and note that the left-infinite word

 $a^{a}_{\infty}T a baaba = \cdots a b b a b a a b b a b b W_{0}$

is cube-free. So, we require that each word W_n satisfies the following properties:

(W1) W_n starts with W_0 ;

(W2) any word ${}_{\infty}^{a}T(k...1)$ is a left context of W_n ;

(W3) some word ${}_{\infty}^{a}T(k...1)$ with $k \ge n$ is the fixed left context of W_n , denoted by X_n ;

(W4) if $|X_n| > n$, then $W_{n+1} = W_n$ (trivial iterations).

The basic idea for obtaining W_{n+1} from W_n at nontrivial iterations is to let

$$W_{n+1} = \underbrace{W_n x X_n W_n x X_n W_n}_{(1)},$$

where *x* is the letter "prohibited" at the (n+1)th iteration, i.e. xX_n certainly is not a left context of W_{n+1} . Thus, the fixed left context of W_{n+1} is longer than the one of W_n by definition.

Remark 1. An attempt to build the series $\{W_n\}_0^\infty$ directly by (1) fails because cubes will occur at the border of some words W_n and xX_n . For instance, let us construct the word W_4 . We have $W_3 = W_0$ in view of (W4) and Example 1, $X_3 = abb$, and the context aabb should be forbidden in view of (W2), because $a^\infty_a T(4...1) = babb$. So, x = a and the word W_3xX_3 has the factor aaa.

A way out from this situation is the following idea: we insert a special "buffer" word after each of three occurrences of W_n in (1). This insertion allows us to avoid local cubes at the border. Below we use the following notation:

- $P'_n = xX_n$, $P_n = \bar{x}X_n$, where x is the letter, prohibited at the (n+1)th iteration; thus, $P_n \in TM$;
- S_n is the word inserted after W_n at the (n+1)th iteration;
- $S'_n = S_0 S_1 \cdots S_n$ is the factor of W_{n+1} between W_0 and the nearest occurrence of P'_n ;

-
$$W'_n = P'_n W_n S_n$$
.

In these terms, we have the following expressions for W_{n+1} for any nontrivial iteration:

$$W_{n+1} = \underbrace{W_n S_n x X_n W_n S_n x X_n W_n S_n}_{(2a)}$$

$$W_{n+1} = \underbrace{W_n S_n P'_n W_n S_n P'_n W_n S_n}_{(2b)}$$

The structure of the word W_{n+1} imposes the following restrictions on the words S_n and S_{n+1} :

- (S1) Since the word $X_{n+1}W_{n+1}S_{n+1}$ is a factor of W_{n+2} , X_{n+1} ends with X_n , and $X_nW_{n+1}x = (X_nW_nS_nx)^3$ by (2a), the word S_{n+1} must start with \bar{x} , which is the first letter of P_n ;
- (S2) Since the word $S_n x X_n$ is a factor of W_{n+1} , if X_n starts with $x [\bar{x} x \bar{x} x]$, then S_n ends with \bar{x} [respectively, x]. (Recall that $X_n \in TM$ is an overlap-free word, whence any other prefix of X_n does not restrict the last letter of S_n .)

Thus, our first goal is to find the words S_n satisfying (S1) and (S2) such that all words S'_n are cube-free. In other words, we have to construct a cube-free right-infinite word $S'_{\infty} = S_0 S_1 \cdots S_n \cdots$. The following lemma is easy.

Lemma 1. The letters ${}_{\infty}^{a}T(n)$ and ${}_{\infty}^{a}T(n-1)$ coincide if and only if $n = m \cdot 2^{k}$ for some odd integers m and k.

Remark 2. If the only left context of length n of the word W_n begins with xx, then $|X_n| > n$, because the letter before xx is also fixed. Thus, by (W4) we have $W_{n+1} = W_n$ (and then $S_n = \lambda$) for all values of n mentioned in Lemma 1. For all other values of n (n > 3), the iterations will be nontrivial.

While constructing the word S'_{∞} we follow the next four rules:

- 1. For all nontrivial iterations, $S_n \in \{T_2^x, T_2^x, T_2^x, T_4^x, T_2^x, T_2^x, T_1^x, T_1^x, T_1^x, T_2^x | x \in \Sigma\}$; hence, $S_n \in \mathsf{TM}$.
- 2. Whenever possible, we choose S_n to be a 2-block or a product of 2-blocks.
- 3. Otherwise, if S_n ends with the block T_1^x , we put $S_{n+1} = T_1^{\bar{x}}$ or $S_{n+1} = T_1^{\bar{x}} T_2^x$ (or the same possibilities for S_{n+2} if $S_{n+1} = \lambda$).
- 4. If $S_n \neq \lambda$ and there is no restriction (S2) on the last letter of S_n , we add this restriction artificially. Namely, we fix the last letter of S_n to be \bar{x} if S_{n-1} ends with x (or if S_{n-2} ends with x while $S_{n-1} = \lambda$).

Taking rules 1–4 into account, we can prove, by case examination, the following lemma about the first and the last letters of the words S_n .

Lemma 2. (1) If S_n ends with x, then either S_{n+1} ends with \bar{x} , or $S_{n+1} = \lambda$ and S_{n+2} ends with \bar{x} . (2) The first letter of a nonempty word S_n coincides with the last one for all n, except for the cases when $P_n = x\bar{x}x\bar{x}\cdots$ or $P_n = xx\bar{x}x\cdots$.

The construction of the word S'_{∞} , the correctness of which we will prove, is given by Table 1. According to this table, rule 3 applies to S_n if and only if P_n starts with $x\bar{x}x\bar{x}$. Hence if the word P_n has such a prefix, then P_{n-1} (or P_{n-2} if the (n-1)th iteration is trivial) has no such prefix; as a result, the word S_{n-1} (respectively, S_{n-2}) ends with a 2-block.

Now consider the case $P_n = x\bar{x}x\bar{x}\cdots$ in more details. Without loss of generality, let P_n start with b. Then $P_n = babaab\cdots$. Since $P'_n = aabaab\cdots$, the word S_n cannot end with a or with baab; thus, it cannot end with a 2-block and we should use rule 3.

 $\frac{S_n}{T_2^x}$

 $T_2^{\overline{x}}T_2^{\overline{x}}T_1^{\overline{y}}$

 T_{2}^{λ}

 $T_2^x T_2^{\overline{x}} T_1^y$

Iteration no.	Prohibitions				Iteration no.	Prohibitions	
(n)	Start	End	S_{n-1}		<i>(n)</i>	Start	End
k	\overline{x}	\overline{x}	T_2^x		k	x	x
k+1					k+1	x	\overline{x}
k+2	x	x	$T_2^{\overline{x}}T_2^{\overline{x}}$		k+2	$\overline{xx}x$	x
k+4	\overline{x}	\overline{x}	T_2^x		k+4	$xx\overline{x}$	\overline{x}
k+5	\overline{x}	$x, T_2^{\overline{x}}$	$T_2^x T_2^{\overline{x}} T_1^x$		<i>k</i> +5	\overline{x}	x
k+6	x	\overline{x}	$T_1^{\overline{x}}$		<i>k</i> +6	$xx\overline{x}$	\overline{x}
k+8	x	x	$T_2^{\overline{x}}$		k+8	$\overline{xx}x$	x
k + 10	\overline{x}	\overline{x}	$T_2^x T_2^x$		k + 10	\overline{x}	\overline{x}
k + 12	x	x	$T_2^{\overline{x}}$	-	k + 12	x	x
k + 13	x	\overline{x}, T_2^x	$\overline{T_2^{\overline{x}}}T_2^{\overline{x}}T_1^{\overline{x}}$		<i>k</i> +13	x	\overline{x}, T_2^x
k + 14	\overline{x}	x	T_1^x		k + 14	\overline{x}	x
<i>k</i> +16	\overline{x}	\overline{x}	T_2^x		<i>k</i> +16	\overline{x}	\overline{x}
k + 17	\overline{x}	x	T_1^x		k + 17	\overline{x}	x
k + 18	$xx\overline{x}$	\overline{x}	$T_1^{\overline{x}}$		k + 18	$xx\overline{x}$	\overline{X}
k + 20	$\overline{xx}x$	x	$T_2^{\overline{x}}$		k + 20	$\overline{xx}x$	x
k + 21	x	\overline{x}	$T_1^{\overline{x}}$		k + 21	x	\overline{x}
k + 22	$\overline{xx}x$	x	T_1^x		k + 22	$\overline{xx}x$	x
k + 24	$xx\overline{x}$	\overline{x}	T_2^x		k + 24	$xx\overline{x}$	\overline{x}
k + 26	x	x	$T_2^{\overline{x}}$		<i>k</i> +26	x	x
k + 28	\overline{x}	\overline{x}	T_4^x		k + 28	\overline{x}	\overline{x}
k + 29	\overline{X}	$x, T_2^{\overline{x}}$	$T_2^x T_2^{\overline{x}} T_1^x$		<i>k</i> +29	\overline{x}	$x, T_2^{\overline{x}}$
k + 30	x	\overline{x}	$T_1^{\overline{x}}(T_1^{\overline{x}}T_2^x)$		k + 30	x	\overline{x}

Table 1: the suffixes S_n for 32 successive iterations starting from some number k divisible by 32. The righthand [lefthand] part of the table applies if the current letter of T_{∞}^b is equal [resp., not equal] to the previous one. Trivial iterations are omitted.

Since P_n is a factor of ${}_{\infty}^a T$ while ${}_{\infty}^a T$ is an infinite product of the blocks $T_2^a = abba$ and $T_2^b = baab$, one of the blocks T_2^a ends in the second position of P_n . First consider the following occurrence of P_n in ${}_{\infty}^a T$:

$${}^{a}_{\infty}T = \cdots \underbrace{abba \ ab}_{P_{n}} \underbrace{T^{a}_{2} \qquad T^{b}_{2} \qquad T^{b}_{2}}_{P_{n}}$$
(3)

Since $P'_{n-1} = bbaab \cdots$, the word S_{n-1} ends with *abba*. Therefore, we cannot put $S_n = ab$ (otherwise S_n will have the suffix *baab*). Further, P_{n-1} starts with *abaab*, whence the first letter of S_n is *a* by (S1). Hence, according to rule 1, the only possibility for S_n is $T_2^a T_2^b T_1^a = abbabaabab$. It is easy to see that $S_{n+1} = ba$ satisfies both (S1) and (S2).

If the last embraced 2-block of (3) is T_2^a , not T_2^b , then we have, up to renaming the letters, the same case as below:

$${}^{a}_{\infty}T = \cdots \underbrace{\overbrace{baab}^{T_{2}^{b}} T_{2}^{a} T_{2}^{b}}_{P_{u}}$$

We assign, as above, $S_n = T_2^a T_2^b T_1^a$ and $S_{n+1} = T_1^b$. The problem appears on the (n+5)th iteration, because

$$P'_{n+4} = b bab bab aab \cdots,$$

i.e., S_{n+4} cannot end with *ba* or *ab*. Here we have an exclusion from the general method. We use the following trick. At the next three iterations ((n+5)th to (n+7)th, the last of them being trivial) we have to add the prefix *baa* to the fixed context. We will do this prohibiting 3-letter contexts instead of single letters. The word $P_{n+3} = babbaba \cdots$ has three left contexts of length 3: *aab*, *baa*, and *bba*. We will prohibit *bba* on the (n+5)th iteration and *aab* on the (n+6)th one. To do this, we deliberately put $P'_{n+4} = bbabbabaab \cdots$, $P'_{n+5} = aabbabbabaab \cdots$. This allows us to choose $S_{n+4} = ba$.

Remark 3. The above trick leads to one local violation of the general rule on X_n . Namely, $|X_{n+5}| = n+4$ (this word coincides with X_{n+4}). The situation is corrected on the next iteration, when we get $|X_{n+6}| = n+7$ (and the (n+7)th iteration is trivial).

Remark 4. The word $T_2^a T_2^a T_2^b T_2^a T_2^a = \theta^2(aabaa)$ is not a factor of ${}^a_{\infty}T$. Hence, the factor $T_2^a T_2^b T_2^a$ occurs in ${}^a_{\infty}T$ inside the factor $T_2^b T_2^a T_2^b T_2^a$ or $T_2^a T_2^b T_2^a T_2^b$. Each such factor requires two uses of the above trick with 3-letter contexts.

Let us consider the 108-uniform morphism $\psi: \Sigma^* \to \Sigma^*$, defined by the rules

$$\psi(a) = T_4^a T_2^a T_2^b T_2^a T_4^b T_2^b T_2^a T_4^b T_2^b T_2^a T_2^b T_2^a T_2^b T_4^a T_2^a T_2^b T_2^a,$$
(4a)

$$\psi(b) = T_4^b T_2^b T_2^a T_2^b T_4^a T_2^a T_2^b T_4^a T_2^a T_2^b T_2^a T_2^b T_2^a T_4^b T_2^b T_2^a T_2^b.$$
(4b)

Note that the words $\psi(b)$ and $\psi(a)$ coincide up to renaming the letters. A computer check shows that the word $\psi(aabbabbabbaabaabaabababb)$ is cube-free. Hence by Theorem 1, ψ is a cube-free morphism and the word $\psi(T_{\infty}^b)$ is cube-free. So we put $S'_{\infty} = \psi(T_{\infty}^b)$. The ψ -image of one letter equals the product $S_{n-1}S_n \cdots S_{n+30}$ for some number *n* divisible by 32, see Table 1. The only exception is described below. Thus, such a ψ -image corresponds to 32 successive iterations, during which a 5-block is added to the fixed left context X_{n-1} to get X_{n+31} .

There are two different factorizations of the ψ -image of a letter, depending on the positions of the factors $T_2^b T_2^a T_2^b T_2^a$ and $T_2^a T_2^b T_2^a T_2^b$ inside and on the borders of the current 5-block of ${}_{\infty}^a T$. These factorizations are presented in the two parts of Table 1. The mentioned factors occur in the middle of (2k+1)-blocks for each $k \ge 2$. Thus, these factors occur in the middle of each 5-block, and also at the border of two equal 5-blocks. For the latter case, the factorization of the ψ -image of the second of two equal letters is given in the righthand part of Table 1. In the lefthand part of Table 1, there are two possibilities for S_{n+29} : the longer [shorter] one should be used if the next 5-block is equal [respectively, not equal] to the current one. In the first case, S_{n+29} consists of the last two letters of the ψ -image of the second case, S_{n+29} consists exactly of the two last letters of the ψ -image.

The first several iterations are special. Namely, for the regularity of general scheme, we artificially put $W_3 = W_0 S_{-1} S_1$ (the 1st and the 3rd iterations are trivial by the general condition).

Thus, we defined the words S_n and then the words W_n for all positive integers n. The correctness of the construction is based on the following lemma.

Lemma 3. The word X_nW_n is cube-free for all $n \in \mathbb{N}_0$.

Proof. We prove by induction that all the words $V_n = (X_n W_n S_n x_n)^3$, where x_n is the letter forbidden on (n+1)th iteration, have no proper factors that are cubes. This fact immediately implies the statement of the lemma. The inductive base $n \le 4$ can be easily checked by hand or by computer. Let us prove the inductive step. The structure of the word V_n is illustrated by the following picture.

Assume to the contrary that the word V_n , $n \ge 5$, contains some cube U^3 . Of course, it is enough to consider the case when the (n+1)th iteration is nontrivial. The factor U^3 of V_n has periods q = |U| and $p_n = |V_n|/3$, but obviously does not satisfy the interaction property. Hence, $|U^3| = 3q \le q + p_n - 2$ by the Fine and Wilf theorem, yielding $q \le p_n/2 - 1$. On the other hand, by definition of W_n , the longest proper suffix of the word X_nW_n coincides with the longest proper prefix of V_{n-1} . If U^3 contains this prefix, then the latter has periods q and $p_{n-1} = |V_{n-1}|/3$. Applying the Fine and Wilf theorem again, we get $p_{n-1} \le q/2 - 1$. Excluding q from the two obtained inequalities, we get $p_n \ge 4p_{n-1} + 3$. But $p_n = |V_{n-1}| + |S_n| + 1 \le 3p_{n-1} + 17$. Thus, $p_{n-1} \le 14$. For $n \ge 5$, this is not the case. So, we conclude that U^3 does not contain the word X_nW_n .

Claim 1. The word S'_n occurs in V_n only three times.

Proof. Recall that S'_n is a product of 2-blocks (possibly except the last "odd" 1-block), and if $n \ge 5$, then S'_n begins with a 4-block. Hence, S'_n has no factor W_0 and, moreover, cannot begin inside W_0 . Furthermore, it can be checked by hand or by computer that S'_{∞} has no Thue-Morse factors of length >48. Now looking at the structure of S'_n and of V_n one can conclude that any "irregular" occurrence of S'_n in V_n should be a prefix of some word $S'_k P'_k W_0$, where k < n. The word S'_k is a proper prefix of S'_n . The word P'_k is obtained from a Thue-Morse factor by changing the first letter, and hence never begins with a 2-block. Hence, the only possibility is k = n - 1, and S_n should be the 1-block coinciding with the prefix of P'_k . By Table 1, in all cases when S_n is a 1-block, P'_{n-1} begins with the square of letter, so this possibility cannot take place.

Claim 2. The word $X_n W_n S_n x_n$ is cube-free.

Proof. The word X_nW_n is a factor of V_{n-1} and hence is cube-free by the inductive assumption. Using again the fact that S'_n is "almost" a product of 2-blocks, we conclude that S'_nx_n is also cube-free. So, a cube in $X_nW_nS_nx_n$, if any, contains inside the suffix S'_{n-1} of the word W_n . This suffix is preceded by $W_0 = aabaaba$; the latter word breaks all periods of S'_{n-1} and does not produce a cube. Hence, the cube should contain more than one occurrence of the factor S'_{n-1} . Applying Claim 1 to the words S'_{n-1} and V_{n-1} , we see that the cube has the period $p_{n-1} = (|X_nW_n|+1)/3$. But this is impossible by condition (S1). The claim is proved.

Combining Claim 2 with the fact that U^3 has no factor X_nW_n , we get that U^3 is contained inside the word $X_nW_nS_nx_nX_nW_n$. Furthermore, if S'_n is a factor of U^3 , then the middle occurrence of U is inside S'_n (otherwise, U^3 contains one more occurrence of S'_n , contradicting Claim 1). In this case, the positions of all factors *aa* and *bb* in U have the same parity. But the rightmost occurrence of U in U^3 contains a suffix

of S'_n followed by a prefix of the word $x_nX_n = P'_n$. The letter x_n breaks this parity of positions, which is impossible. The cases in which all the positions of *aa* and *bb* in the rightmost occurrence of *U* are on the same side of the letter x_n , can be easily checked by hand. Thus, we obtain that S'_n is not a factor of U^3 . Thus, U^3 begins inside the factor $S'_n x_n$.

Where the word U^3 ends? It is easy to see that the word

$$X_n W_n = \bar{x}_{n-1} X_{n-1} W_{n-1} S_{n-1} X_{n-1} X_{n-1} W_{n-1} S_{n-1} X_{n-1} X_{n-1}$$

has the same three occurrences of the factor S'_{n-1} as V_{n-1} . So, if U^3 contains S'_{n-1} , then the middle occurrence of U is inside S'_{n-1} . But this is impossible because S'_{n-1} is a rather short suffix of W_{n-1} and the whole word $X_n W_n$ is cube-free. Therefore, U^3 should end inside the prefix $\bar{x}_{n-1}X_{n-1}W_{n-1}S_{n-1}$ of $X_n W_n$, like in the following picture.

By construction, the word X_n is the fixed left extension of W_n . Now we consider the second step, that is, the completion of such "almost uniquely" extendable word W_n to a premaximal word. The main idea is the same as at the first step. In order to obtain a premaximal word of level n, we build the word W_{n+1} in n+1 iterations by scheme (2a) and then prohibit the extension of W_{n+1} by the first letter of the word P_n . We denote the obtained premaximal word of level n by \overline{W}_n . Then

$$\overline{W}_n = \underbrace{W_{n+1}\overline{S}_n P_n W_{n+1}\overline{S}_n P_n W_{n+1}\overline{S}_n}_{(5)},$$

where \overline{S}_n is a "buffer" inserted similarly to S_n in order to avoid cubes at the border of the occurrences of W_{n+1} and P_n . In contrast to the first step, we do not need to build a cube-free right-infinite word, because the construction (5) is used only once. The form of the word \overline{S}_n depends on the last iteration according to Table 1; this dependence is described in Table 2. We choose \overline{S}_n to be the left extension of the word P_n within $\underset{a}{\overset{a}{}}T$ (recall that $P_n = \underset{a}{\overset{a}{}}T(n+1...1)$).

The above idea works without additional gadgets in all cases when $|X_n| = n$. Due to the following obvious remark, it is enough to construct left premaximal words of level *n* for all *n* such that $|X_n| = n$; hence, we do not consider constructing the words \overline{W}_n for other values of *n*.

Iteration no.	Prohibitions]	Iteration no.	Prohibitions	
(<i>n</i>)	(Start)	\overline{S}_{n-1}		(n)	(Start)	\overline{S}_{n-1}
k				k	\overline{x}	λ
k+1	\overline{x}	$x\overline{x}$		k+1		
k+3	x	\overline{x}		<i>k</i> +3	$\overline{xx}x$	\overline{x}
k+4	x	λ		k+4	x	λ
k+5	\overline{x}	$x\overline{xx}x$		<i>k</i> +5		
k+7	\overline{x}	$x\overline{x}$		<i>k</i> +7	$xx\overline{x}$	$x\overline{x}$
k+9	x	$\overline{x}x$		<i>k</i> +9	x	$\overline{x}x$
k + 11	\overline{x}	x		k + 11	\overline{x}	x
k + 12	\overline{x}	λ		k + 12	\overline{x}	λ
k + 13	x	λ		k + 13	x	λ
k + 15	x	\overline{x}		k + 15	x	\overline{x}
k + 16	x	λ		<i>k</i> +16	x	λ
k + 18	$xx\overline{x}$	$x\overline{x}$		k + 18		
k + 19				k + 19	$xx\overline{x}$	x
k + 20	\overline{x}	λ		k + 20	\overline{x}	λ
k + 23	$\overline{xx}x$	$\overline{x}x$		<i>k</i> +23	$\overline{xx}x$	$\overline{x}x$
k + 25	\overline{x}	$x\overline{x}$		k + 25	\overline{x}	$x\overline{x}$
k + 27	x	\overline{x}		k + 27	x	\overline{x}
k + 28	x	λ]	k + 28	x	λ
k + 29	\overline{X}	λ	1	<i>k</i> +29	\overline{x}	λ
k + 31	\overline{x}	x	1	<i>k</i> +31	\overline{x}	$x\overline{x}$

Table 2: the "final" suffixes \overline{S}_n for the corresponding iterations from Table 1. The first column contains the number of the last iteration.

Remark 5. In order to prove the Theorem 2, it is sufficient to show the existence of left premaximal words of level n for infinitely many different values of n. Indeed, if a word W is left premaximal of level n and $a_1 \cdots a_n W$ is a left maximal word, then the word $a_n W$ is left premaximal of level n-1.

Using the facts that $W_{n+1} \in CF$, $\overline{S}_n P_n \in TM$, and the suffix S'_n of W_{n+1} has no long Thue-Morse factors (this is the property of any ψ -image), we prove the following lemma. The proof resembles the one of Lemma 3.

Lemma 4. The word $X_n \overline{W}_n$ is cube-free for all $n \in \mathbb{N}_0$.

Since the word $P_n \overline{W}_n$ is a cube by (5) and at the same time $P_n = X_{n+1}$ is the fixed left context of W_{n+1} , we conclude that X_n is the longest left context of the word \overline{W}_n . Theorem 2 is proved.

Remark 6. For any *n*, the word $\operatorname{rev}(\overline{W}_n) = \overline{W}_n(|\overline{W}_n|) \cdots \overline{W}_n(1)$ is right premaximal of level *n*.

Remark 7. Our construction provides an upper bound for the length of the shortest left premaximal word of any given level n. The results of [4] suggest that this length is exponential in n. Let $l(n) = |W_n|$. For nontrivial iterations, we have l(n) = 3l(n-1) + O(n). It is well known that two successive letters in the Thue-Morse word are equal with probability 1/3. Thus, to obtain W_n , we make approximately 2n/3 nontrivial iterations. So, l(n) is exponential at base $3^{2/3} \approx 2.08$. The same property holds for $|\overline{W_n}| = 3l(n+1) + O(n)$. It is interesting whether this asymptotics is the best possible.

Sketch of the proof of Theorem 3. Similar to Remark 5, it is enough to build premaximal words of level (n_i, n_i) for some infinite sequence $n_1 < n_2 < ... < n_i < ...$ of positive integers. We take $n_i = 32i + 3$ (Table 2 indicates that $\overline{S}_{n_i} = \lambda$, which makes the construction easier). The natural idea is to concatenate left premaximal and right premaximal words through some "buffer" word. But we cannot use the words \overline{W}_n for this purpose, because all words $X_n \overline{W}_n$ appear to be right maximal.

So, we modify the last step in constructing left premaximal words as follows. The proof of Lemma 3 implies that the word $X_n W_n S_n \cdots S_{n+l}$ is cube-free for any *l*. So, we put

$$\widetilde{W}_{n_i} = \underbrace{W_{n_i+1}S_{n_i+2}}_{W_{n_i+1}S_{n_i+1}S_{n_i+1}S_{n_i+2}}\underbrace{P_{n_i}W_{n_i+1}S_{n_i+2}}_{P_{n_i}W_{n_i+1}S_{n_i+1}S_{n_i+2}}.$$

By Table 1, $S_{n_i+3} = \lambda$ and $S_{n_i+4}(1) \neq S_{n_i+1}(1) = x$. The proof of the fact that $X_{n_i}\widetilde{W}_{n_i} \in \mathsf{CF}$ reproduces the proof of Lemma 4. Recall that $S_{n_i+1}(1) = P_{n_i}(1)$ by (S1), yielding that this letter breaks the period of W_{n_i+1} (see (2b)). On the other hand, the letter \bar{x} breaks the global period of the word \widetilde{W}_{n_i} . Hence, the condition $X_{n_i+1}W_{n_i+1}S_{n_i+1}\cdots S_{n_i+l} \in \mathsf{CF}$ implies $X_{n_i}\widetilde{W}_{n_i}S_{n_i+3}\cdots S_{n_i+l} \in \mathsf{CF}$ for any l. Thus, \widetilde{W}_{n_i} is infinitely extendable to the right, left premaximal word of level n_i .

Choose an even *m* such that $|X_{n_i}\widetilde{W}_{n_i}| < 2^{m-2}$ and consider the word $\widetilde{W}_{n_i,n_i} = \widetilde{W}_n T_m^{\bar{x}} \operatorname{rev}(\widetilde{W}_n)$:

\widetilde{W}_{n_i}				$\operatorname{rev}(\widetilde{W}_{n_i})$		
$\widetilde{W}_{n_i,n_i} =$	W_0	S'_{n_i+2}	$T_m^{ar{x}}$	$\operatorname{rev}(S'_{n_i+2})$		

It remains to prove that the word $X_{n_i}\widetilde{W}_{n_i,n_i}\operatorname{rev}(X_{n_i})$ is cube-free. By the choice of m and overlapfreeness of $T_m^{\bar{x}}$, no cube can contain the factor $T_m^{\bar{x}}$. So, by symmetry, it is enough to check that the word $U = X_{n_i}\widetilde{W}_{n_i}T_m^{\bar{x}}$ is cube-free. Assume to the contrary that it contains a cube YYY. Recall that the word $X_{n_i}\widetilde{W}_{n_i}$ is cube-free. Since the first letter of $T_m^{\bar{x}}$ breaks the period of $X_{n_i}\widetilde{W}_{n_i}$ one has $|Y| < \operatorname{per}(\widetilde{W}_{n_i})$. Consider the rightmost factor *aabaa* in U; it is inside the factor W_0 immediately before the suffix S'_{n_i+2} of \widetilde{W}_n . If this factor belongs to YYY, then |Y| symbols to the left we have another *aabaa*, followed by S'_{n_i+2} . Then $|Y| = \operatorname{per}(\widetilde{W}_{n_i})$, a contradiction. Hence, YYY has no factors *aabaa*, i.e., is a factor of *abaaba* $S'_{n_i+2}T_m^{\bar{x}}$. One can check that the word S'_{n_i+2} contains no Thue-Morse factors of length > 48. The shorter factors can be checked by brute force.

Thus, the word W_{n_i,n_i} is premaximal of level (n_i,n_i) . The theorem is proved.

References

[1] J.-P. Allouche, J. Shallit (2003): Automatic Sequences: Theory, Applications, Generalizations, Cambridge Univ. Press, doi:10.1017/CB09780511546563.

- [2] D. R. Bean, A. Ehrenfeucht, G. McNulty (1979): Avoidable patterns in strings of symbols, Pacific J. Math. 85, 261–294.
- [3] F.-J. Brandenburg (1983): Uniformly growing k-th power free homomorphisms, Theor. Comput. Sci. 23, 69–82, doi:10.1016/0304-3975(88)90009-6.
- [4] J. D. Currie (1995): On the structure and extendability of k-power free words, European J. Comb. 16, 111–124, doi:10.1016/0195-6698(95)90051-9.
- [5] J. D. Currie, N. Rampersad (2009): There are k-uniform cubefree binary morphisms for all $k \ge 0$, Discrete Appl. Math. 157, 2548–2551, doi:10.1016/j.dam.2009.02.010. Available at http://arxiv.org/abs/0812.4470v1.
- [6] R. M. Jungers, V. Y. Protasov, V. D. Blondel (2009): Overlap-free words and spectra of matrices, Theor. Comput. Sci. 410, 3670–3684, doi:10.1016/j.tcs.2009.04.022. Available at http://arxiv.org/abs/0709.1794.

- [7] M. Lothaire (1983): Combinatorics on words, Addison-Wesley, Reading, doi:10.1017/CB09780511566097.
- [8] A. Restivo, S. Salemi (2002): *Words and Patterns*, Proc. 5th Int. Conf. Developments in Language Theory. Springer, Heidelberg, 117–129. (LNCS Vol. **2295**), doi:10.1007/3-540-46011-X_9.
- [9] G. Richomme, F. Wlazinski (2000): About cube-free morphisms, Proc. STACS'2000. Springer, Berlin, 99–109. (LNCS Vol. 1770), doi:10.1007/3-540-46541-3_8.
- [10] P. Séébold (1984): *Overlap-free sequences*, Automata on Infinite Words. Ecole de Printemps d'Informatique Theorique, Le Mont Dore. Springer, Heidelberg, 207–215. (LNCS Vol. **192**).
- [11] A. M. Shur (1998): Syntactic semigroups of avoidable languages, Siberian Math. J. **39** (1998), 594–610.
- [12] A. M. Shur (2000): *The structure of the set of cube-free Z-words over a two-letter alphabet*, Izv. Math. **64**(4), 847–871, doi:10.1070/IM2000v064n04ABEH000301.
- [13] A. M. Shur (2009): Two-sided bounds for the growth rates of power-free languages, Proc. 13th Int. Conf. on Developments in Language Theory. Springer, Berlin, 466–477. (LNCS Vol. 5583), doi:10.1007/ 978-3-642-02737-6_38.
- [14] A. M. Shur (2011): *Deciding context equivalence of binary overlap-free words in linear time*, Semigroup Forum. (Submitted)
- [15] A. Thue (1912): *Über die gegenseitige Lage gleicher Teile gewisser Zeichentreihen*, Norske Vid. Selsk. Skr. I, Mat. Nat. Kl. 1. Christiana, 1–67.