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We study the structure of the language of binary cube-free words. Namely, we are interested in the
cube-free words that cannot be infinitely extended preserving cube-freeness. We show the existence
of such words with arbitrarily long finite extensions, both to one side and to both sides.

1 Introduction

The study of repetition-free words and languages remains quite popular in combinatorics of words: lots
of interesting and challenging problems are still open. Themost popular repetition-free binary languages
are thecube-freelanguageCF and theoverlap-freelanguageOF. The languageCF is much bigger and
has much more complicated structure. For example, the number of overlap-free binary words grows only
polynomially with the length [8], while the language of cube-free words has exponential growth [3]. The
most accurate bounds for the growth ofOF is given in [6] and for the growth ofCF in [13]. Further,
there is essentially unique nontrivial morphism preserving OF [10], while there are uniform morphisms
of any length preservingCF [5]. The sets of two-sided infinite overlap-free and cube-free binary words
also have quite different structure, see [12].

Any repetition-free language can be viewed as a poset with respect to prefix, suffix, or factor order.
In case of prefix [suffix] order, the diagram of such a poset is atree; each node generates a subtree and
is a common prefix [respectively, suffix] of its descendants.The following questions arise naturally.
Does a given word generate finite or infinite subtree? Are the subtrees generated by two given words
isomorphic? Can words generate arbitrarily large finite subtrees?For some power-free languages, the
decidability of the first question was proved in [4] as a corollary of interesting structural properties. The
third question for ternary square-free words constitutes Problem 1.10.9 of [1]. For allkth power-free
languages, it was shown in [2] that the subtree generated by any word has at least one leaf. Note that
considering the factor order instead of the prefix or the suffix one, we get a more general acyclic graph
instead of a tree, but still can ask the same questions about the structure of this graph. For the language
OF, all these questions were answered in [11, 14], but almost nothing is known about the same questions
for CF.

In this paper, we answer the third question for the languageCF in the affirmative. Namely, we
construct cube-free words that generate subtrees of any prescribed depth and then extend this result for
the subgraphs of the diagram of factor order.

2 Preliminaries

Let us recall necessary notation and definitions. We consider finite and infinite words over the binary
alphabetΣ= {a,b}. If x is a letter, then ¯x denotes the other letter. By default, “word” means a finite word.
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Words are denoted by uppercase characters (to denote one-sided infinite words, we add the subcsript∞ at
the corresponding side). We writeλ for theempty word, and|W| for the length of the wordW. The letters
of nonempty finite and right-infinite words are numbered from1; thus,W =W(1)W(2) · · ·W(|W|). The
letters of left-infinite words are numbered byall nonnegative integers, starting from the right.

We use standard definitions of factors, prefixes, and suffixesof a word. The factorW(i) · · ·W( j)
is written asW(i . . . j). A positive integerp ≤ |W| is a period of a wordW if W(i) = W(i+p) for all
i ∈ {1, . . . , |W|−p}. The minimal period ofW is denoted by per(W). The exponentof a word is the
ratio between its length and its minimal period: exp(W) = |W|/per(W). Words of exponent 2 and 3
are called squares and cubes, respectively. Thelocal exponentof a word is the number lexp(W) =
sup{exp(V)|V is a factor ofW}. Periodic words possess theinteraction propertyexpressed by the text-
book Fine and Wilf theorem: if a wordU has periodsp andq, and|U | ≥ p+q−gcd(p,q), thenU has
the period gcd(p,q).

A word W is β -free [β+-free] if lexp(W) < β [respectively, lexp(W) ≤ β ]. The 3-free words are
calledcube-free, and the 2+-free words areoverlap-free. The language of all cube-free [overlap-free]
words overΣ is denoted byCF [respectively,OF]. A morphism f : Σ+ → Σ+ avoids an exponentβ if the
condition lexp(U)< β implies lexp( f (U)) < β for any wordU . The following theorem allowes one to
check cube-freeness of a morphism over the binary alphabet.

Theorem 1 ([9]). A morphism f: Σ+ → Σ+ is cube-free if and only if the word
f (aabbababbabbaabaababaabb) is cube-free.

TheThue–Morse morphismθ is defined overΣ+ by the rulesθ(a) = ab, θ(b) = ba. The words

Ta
n = θn(a), Tb

n = θn(b) (n≥ 0)

are calledThue–Morse blocksor simply n-blocks. From the definition it follows thatTx
n+1 = Tx

n T x̄
n .

Hence, the sequences{Ta
n } and{Tb

n } have “limits”, which are right-infiniteThue-Morse words Ta∞ and
Tb

∞ , respectively. We also consider the reversala
∞T of Ta

∞ . The factors of Thue-Morse words areThue-
Morse factors; the set of all these factors is denoted byTM. Note that any word inTM can be written as
W = xQ1 · · ·Qny, wherex,y∈ Σ∪{λ}, Q1, . . . ,Qn ∈ {ba,ab}. It is known since Thue [15] thatTM⊂OF.

Let L ⊂ Σ∗ andW ∈ L. Any wordU ∈ Σ∗ such thatUW ∈ L is called aleft contextof W in L. The
wordW is left maximal[left premaximal] if it has no nonempty left contexts [respectively, finitelymany
left contexts]. Thelevelof the left premaximal wordW is the length of its longest left context; thus, left
maximal words are of level 0. The right counterparts of the above notions are defined in a symmetric
way. We say that a word ismaximal [premaximal]if it is both left and right maximal [respectively,
premaximal]. Thelevelof a premaximal wordW is the pair(n,k) ∈N such thatn andk are the length of
the longest left context ofW and the length of its longest right context, respectively.

In particular, a wordW ∈ CF is maximal if by adding any of the two letters on the left or on the right
we obtain a cube. The wordaabaabaais an example of such a word.

The aim of this paper is to prove the following theorems:

Theorem 2. In CF, there exist left premaximal words of any level n∈ N0.

Theorem 3. In CF, there exist premaximal words of any level(n,k) ∈ N
2
0.

3 Construction of premaximal words

Theorem 2 is proved by exhibiting a series of left premaximalwords, containing words of any level. The
series is constructed in two steps:
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1. building an auxiliary series{Wn}
∞
0 such that each wordWn has, up to one easily handled exception,

a unique left context of any length≤ n;

2. completing the wordWn to a left premaximal wordWn.

If a wordW ∈ CF has a unique left context of lengthn, sayU , and two left contexts of lengthn+1,
then we say thatU is thefixedleft context ofW (see the picture below).

U W
· · ·

· · ·

Example 1. Let W= aabaaba. Since aW= aaa· · · , abW= (aba)3, but aabbW,babbW∈ CF, we see
that the fixed left context of the word W equals abb.

Now let us explain step 1. We build the series{Wn}
∞
0 inductively, one word per iteration, in a way

that the fixed left contextXn of the wordWn is of length≥ n (we will discuss the mentioned exception at
the moment of its appearance). We putW0 = aabaabaand note that the left-infinite word

a
∞T abaaba= · · ·abbabaabbaababbW0

is cube-free. So, we require that each wordWn satisfies the following properties:

(W1) Wn starts withW0;

(W2) any worda
∞T(k. . .1) is a left context ofWn;

(W3) some worda
∞T(k. . .1) with k≥ n is the fixed left context ofWn, denoted byXn;

(W4) if |Xn|> n, thenWn+1 =Wn (trivial iterations).

The basic idea for obtainingWn+1 from Wn at nontrivial iterations is to let

Wn+1 = Wn︸ ︷︷ ︸
xXnWn︸ ︷︷ ︸

xXnWn︸ ︷︷ ︸
, (1)

wherex is the letter “prohibited” at the(n+1)th iteration, i.e.xXn certainly is not a left context ofWn+1.
Thus, the fixed left context ofWn+1 is longer than the one ofWn by definition.

Remark 1. An attempt to build the series{Wn}
∞
0 directly by (1) fails because cubes will occur at the

border of some words Wn and xXn. For instance, let us construct the word W4. We have W3 =W0 in view
of (W4) and Example 1, X3 = abb, and the context aabb should be forbidden in view of (W2),because
a

∞T(4. . .1) = babb. So, x= a and the word W3xX3 has the factor aaa.

A way out from this situation is the following idea: we inserta special “buffer” word after each of
three occurrences ofWn in (1). This insertion allows us to avoid local cubes at the border. Below we use
the following notation:

- P′
n = xXn, Pn = x̄Xn, wherex is the letter, prohibited at the(n+1)th iteration; thus,Pn ∈ TM;

- Sn is the word inserted afterWn at the(n+1)th iteration;

- S′n = S0S1 · · ·Sn is the factor ofWn+1 betweenW0 and the nearest occurrence ofP′
n;

- W′
n = P′

nWnSn.
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In these terms, we have the following expressions forWn+1 for any nontrivial iteration:

Wn+1 = WnSn︸ ︷︷ ︸
xXnWnSn︸ ︷︷ ︸

xXnWnSn︸ ︷︷ ︸
(2a)

Wn+1 = WnSn
︸ ︷︷ ︸

P′
nWnSn
︸ ︷︷ ︸

P′
nWnSn
︸ ︷︷ ︸

(2b)

The structure of the wordWn+1 imposes the following restrictions on the wordsSn andSn+1:

(S1) Since the wordXn+1Wn+1Sn+1 is a factor ofWn+2, Xn+1 ends withXn, andXnWn+1x= (XnWnSnx)3

by (2a), the wordSn+1 must start with ¯x, which is the first letter ofPn;

(S2) Since the wordSnxXn is a factor ofWn+1, if Xn starts withx [x̄xx̄x], thenSn ends with ¯x [respectively,
x]. (Recall thatXn ∈ TM is an overlap-free word, whence any other prefix ofXn does not restrict
the last letter ofSn.)

Thus, our first goal is to find the wordsSn satisfying (S1) and (S2) such that all wordsS′n are cube-free.
In other words, we have to construct a cube-free right-infinite wordS′∞ = S0S1 · · ·Sn · · · . The following
lemma is easy.

Lemma 1. The lettersa
∞T(n) and a

∞T(n−1) coincide if and only if n= m·2k for some odd integers m
and k.

Remark 2. If the only left context of length n of the word Wn begins with xx, then|Xn|> n, because the
letter before xx is also fixed. Thus, by(W4) we have Wn+1 = Wn (and then Sn = λ ) for all values of n
mentioned in Lemma 1. For all other values of n (n> 3), the iterations will be nontrivial.

While constructing the wordS′∞ we follow the next four rules:

1. For all nontrivial iterations,Sn ∈ {Tx
2 ,T

x
2 Tx

2 ,T
x
4 ,T

x
2 Tx

2 Tx
1 ,T

x
1 ,T

x
1 T x̄

2 |x∈ Σ}; hence,Sn ∈ TM.

2. Whenever possible, we chooseSn to be a 2-block or a product of 2-blocks.

3. Otherwise, ifSn ends with the blockTx
1 , we putSn+1 =T x̄

1 or Sn+1 =T x̄
1 Tx

2 (or the same possibilities
for Sn+2 if Sn+1 = λ ).

4. If Sn 6= λ and there is no restriction (S2) on the last letter ofSn, we add this restriction artificially.
Namely, we fix the last letter ofSn to be x̄ if Sn−1 ends withx (or if Sn−2 ends withx while
Sn−1 = λ ).

Taking rules 1–4 into account, we can prove, by case examination, the following lemma about the
first and the last letters of the wordsSn.

Lemma 2. (1) If Sn ends with x, then either Sn+1 ends withx̄, or Sn+1 = λ and Sn+2 ends withx̄.
(2) The first letter of a nonempty word Sn coincides with the last one for all n, except for the cases when
Pn = xx̄xx̄· · · or Pn = xxx̄x· · · .

The construction of the wordS′∞, the correctness of which we will prove, is given by Table 1. Ac-
cording to this table, rule 3 applies toSn if and only if Pn starts withxx̄xx̄. Hence if the wordPn has such
a prefix, thenPn−1 (or Pn−2 if the (n−1)th iteration is trivial) has no such prefix; as a result, the word
Sn−1 (respectively,Sn−2) ends with a 2-block.

Now consider the casePn = xx̄xx̄· · · in more details. Without loss of generality, letPn start withb.
ThenPn = babaab· · · . SinceP′

n = aabaab. . ., the wordSn cannot end witha or with baab; thus, it cannot
end with a 2-block and we should use rule 3.
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Table 1: the suffixesSn for 32 successive iterations starting from some numberk divisible by 32. The
righthand [lefthand] part of the table applies if the current letter ofTb

∞ is equal [resp., not equal] to the
previous one. Trivial iterations are omitted.

Iteration no. Prohibitions
(n) Start End Sn−1

k x x Tx
2

k+1
k+2 x x Tx

2 Tx
2

k+4 x x Tx
2

k+5 x x,Tx
2 Tx

2 Tx
2 Tx

1

k+6 x x Tx
1

k+8 x x Tx
2

k+10 x x Tx
2 Tx

2

k+12 x x Tx
2

k+13 x x,Tx
2 Tx

2 Tx
2 Tx

1

k+14 x x Tx
1

k+16 x x Tx
2

k+17 x x Tx
1

k+18 xxx x Tx
1

k+20 xxx x Tx
2

k+21 x x Tx
1

k+22 xxx x Tx
1

k+24 xxx x Tx
2

k+26 x x Tx
2

k+28 x x Tx
4

k+29 x x,Tx
2 Tx

2 Tx
2 Tx

1

k+30 x x Tx
1 (T

x
1 Tx

2 )

Iteration no. Prohibitions
(n) Start End Sn−1

k x x Tx
2

k+1 x x Tx
1

k+2 xxx x Tx
1

k+4 xxx x Tx
2

k+5 x x Tx
1

k+6 xxx x Tx
1

k+8 xxx x Tx
2

k+10 x x Tx
2

k+12 x x Tx
4

k+13 x x,Tx
2 Tx

2 Tx
2 Tx

1

k+14 x x Tx
1

k+16 x x Tx
2

k+17 x x Tx
1

k+18 xxx x Tx
1

k+20 xxx x Tx
2

k+21 x x Tx
1

k+22 xxx x Tx
1

k+24 xxx x Tx
2

k+26 x x Tx
2

k+28 x x Tx
4

k+29 x x,Tx
2 Tx

2 Tx
2 Tx

1

k+30 x x Tx
1

SincePn is a factor of a
∞T while a

∞T is an infinite product of the blocksTa
2 = abbaandTb

2 = baab,
one of the blocksTa

2 ends in the second position ofPn. First consider the following occurrence ofPn in
a

∞T:

a
∞T = · · ·

Ta
2

︷︸︸︷
abba

Ta
2

︷︸︸︷
abba

Tb
2

︷︸︸︷
baab

Tb
2

︷︸︸︷
baab· · ·︸ ︷︷ ︸

Pn

(3)

SinceP′
n−1 = bbaab· · · , the wordSn−1 ends withabba. Therefore, we cannot putSn = ab (otherwise

Sn will have the suffixbaab). Further,Pn−1 starts withabaab, whence the first letter ofSn is a by (S1).
Hence, according to rule 1, the only possibility forSn is Ta

2 Tb
2 Ta

1 = abbabaabab. It is easy to see that
Sn+1 = ba satisfies both (S1) and (S2).
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If the last embraced 2-block of (3) isTa
2 , not Tb

2 , then we have, up to renaming the letters, the same
case as below:

a
∞T = · · ·

Tb
2

︷︸︸︷
baab

Ta
2

︷︸︸︷
abba

Tb
2

︷︸︸︷
baab· · ·︸ ︷︷ ︸

Pn

We assign, as above,Sn = Ta
2 Tb

2 Ta
1 and Sn+1 = Tb

1 . The problem appears on the(n+5)th iteration,
because

P′
n+4 = b︸︷︷︸ bab︸︷︷︸ bab︸︷︷︸aab· · · ,

i.e., Sn+4 cannot end withba or ab. Here we have an exclusion from the general method. We use the
following trick. At the next three iterations ((n+5)th to (n+7)th, the last of them being trivial) we
have to add the prefixbaa to the fixed context. We will do this prohibiting 3-letter contexts instead of
single letters. The wordPn+3 = babbaba· · · has three left contexts of length 3:aab, baa, andbba. We
will prohibit bbaon the(n+5)th iteration andaabon the(n+6)th one. To do this, we deliberately put
P′

n+4 = bbababbabaab· · · , P′
n+5 = aabbabbabaab· · · . This allows us to chooseSn+4 = ba,Sn+5 = ab.

Remark 3. The above trick leads to one local violation of the general rule on Xn. Namely,|Xn+5|= n+4
(this word coincides with Xn+4). The situation is corrected on the next iteration, when we get |Xn+6| =
n+7 (and the(n+7)th iteration is trivial).

Remark 4. The word Ta
2 Ta

2 Tb
2 Ta

2 Ta
2 = θ2(aabaa) is not a factor ofa∞T. Hence, the factor Ta2 Tb

2 Ta
2 occurs

in a
∞T inside the factor Tb2 Ta

2 Tb
2 Ta

2 or Ta
2 Tb

2 Ta
2 Tb

2 . Each such factor requires two uses of the above trick
with 3-letter contexts.

Let us consider the 108-uniform morphismψ : Σ∗ → Σ∗, defined by the rules

ψ(a) = Ta
4 Ta

2 Tb
2 Ta

2 Tb
4 Tb

2 Ta
2 Tb

4 Tb
2 Ta

2 Tb
2 Ta

4 Ta
2 Tb

2 Ta
2 , (4a)

ψ(b) = Tb
4 Tb

2 Ta
2 Tb

2 Ta
4 Ta

2 Tb
2 Ta

4 Ta
2 Tb

2 Ta
2 Tb

4 Tb
2 Ta

2 Tb
2 . (4b)

Note that the wordsψ(b) andψ(a) coincide up to renaming the letters. A computer check shows that the
word ψ(aabbababbabbaabaababaabb) is cube-free. Hence by Theorem 1,ψ is a cube-free morphism
and the wordψ(Tb

∞) is cube-free. So we putS′∞ = ψ(Tb
∞). Theψ-image of one letter equals the product

Sn−1Sn · · ·Sn+30 for some numbern divisible by 32, see Table 1. The only exception is describedbelow.
Thus, such aψ-image corresponds to 32 successive iterations, during which a 5-block is added to the
fixed left contextXn−1 to getXn+31.

There are two different factorizations of theψ-image of a letter, depending on the positions of the
factorsTb

2 Ta
2 Tb

2 Ta
2 andTa

2 Tb
2 Ta

2 Tb
2 inside and on the borders of the current 5-block ofa

∞T. These fac-
torizations are presented in the two parts of Table 1. The mentioned factors occur in the middle of
(2k+1)-blocks for eachk ≥ 2. Thus, these factors occur in the middle of each 5-block, and also at the
border of two equal 5-blocks. For the latter case, the factorization of theψ-image of the second of two
equal letters is given in the righthand part of Table 1. In thelefthand part of Table 1, there are two
possibilities forSn+29: the longer [shorter] one should be used if the next 5-block is equal [respectively,
not equal] to the current one. In the first case,Sn+29 consists of the last two letters of theψ-image of the
current letter and first four letters of theψ-image of the next letter. In the second case,Sn+29 consists
exactly of the two last letters of theψ-image.

The first several iterations are special. Namely, for the regularity of general scheme, we artificially
putW3 =W0S−1S1 (the 1st and the 3rd iterations are trivial by the general condition).

Thus, we defined the wordsSn and then the wordsWn for all positive integersn. The correctness of
the construction is based on the following lemma.
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Lemma 3. The word XnWn is cube-free for all n∈ N0.

Proof. We prove by induction that all the wordsVn = (XnWnSnxn)
3, wherexn is the letter forbidden on

(n+1)th iteration, have no proper factors that are cubes. This fact immediately implies the statement of
the lemma. The inductive basen≤ 4 can be easily checked by hand or by computer. Let us prove the
inductive step.The structure of the wordVn is illustrated by the following picture.

Wn Wn WnSn Sn SnXn Xn Xnxn xn xnVn =

W0 W0 S′n P′
n W0 · · ·

pn pn pn

Assume to the contrary that the wordVn, n≥ 5, contains some cubeU3. Of course, it is enough to
consider the case when the(n+1)th iteration is nontrivial. The factorU3 of Vn has periodsq= |U | and
pn = |Vn|/3, but obviously does not satisfy the interaction property.Hence,|U3| = 3q≤ q+ pn−2 by
the Fine and Wilf theorem, yieldingq ≤ pn/2−1. On the other hand, by definition ofWn, the longest
proper suffix of the wordXnWn coincides with the longest proper prefix ofVn−1. If U3 contains this
prefix, then the latter has periodsq and pn−1 = |Vn−1|/3. Applying the Fine and Wilf theorem again,
we getpn−1 ≤ q/2− 1. Excludingq from the two obtained inequalities, we getpn ≥ 4pn−1 + 3. But
pn = |Vn−1|+ |Sn|+1≤ 3pn−1+17. Thus,pn−1 ≤ 14. Forn≥ 5, this is not the case. So, we conclude
thatU3 does not contain the wordXnWn.

Claim 1.The wordS′n occurs inVn only three times.

Proof. Recall thatS′n is a product of 2-blocks (possibly except the last “odd” 1-block), and ifn ≥ 5,
then S′n begins with a 4-block. Hence,S′n has no factorW0 and, moreover, cannot begin insideW0.
Furthermore, it can be checked by hand or by computer thatS′∞ has no Thue-Morse factors of length
>48. Now looking at the structure ofS′n and ofVn one can conclude that any “irregular” occurrence of
S′n in Vn should be a prefix of some wordS′kP

′
kW0, wherek < n. The wordS′k is a proper prefix ofS′n.

The wordP′
k is obtained from a Thue-Morse factor by changing the first letter, and hence never begins

with a 2-block. Hence, the only possibility isk= n−1, andSn should be the 1-block coinciding with the
prefix of P′

k. By Table 1, in all cases whenSn is a 1-block,P′
n−1 begins with the square of letter, so this

possibility cannot take place.

Claim 2.The wordXnWnSnxn is cube-free.

Proof. The wordXnWn is a factor ofVn−1 and hence is cube-free by the inductive assumption. Using
again the fact thatS′n is “almost” a product of 2-blocks, we conclude thatS′nxn is also cube-free. So,
a cube inXnWnSnxn, if any, contains inside the suffixS′n−1 of the wordWn. This suffix is preceded by
W0 = aabaaba; the latter word breaks all periods ofS′n−1 and does not produce a cube. Hence, the cube
should contain more than one occurrence of the factorS′n−1. Applying Claim 1 to the wordsS′n−1 and
Vn−1, we see that the cube has the periodpn−1 = (|XnWn|+1)/3. But this is impossible by condition (S1).
The claim is proved.

Combining Claim 2 with the fact thatU3 has no factorXnWn, we get thatU3 is contained inside the
word XnWnSnxnXnWn. Furthermore, ifS′n is a factor ofU3, then the middle occurrence ofU is insideS′n
(otherwise,U3 contains one more occurrence ofS′n, contradicting Claim 1). In this case, the positions of
all factorsaaandbb in U have the same parity. But the rightmost occurrence ofU in U3 contains a suffix
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of S′n followed by a prefix of the wordxnXn = P′
n. The letterxn breaks this parity of positions, which is

impossible. The cases in which all the positions ofaaandbb in the rightmost occurrence ofU are on the
same side of the letterxn, can be easily checked by hand. Thus, we obtain thatS′n is not a factor ofU3.
Thus,U3 begins inside the factorS′nxn.

Where the wordU3 ends? It is easy to see that the word

XnWn = x̄n−1Xn−1Wn−1Sn−1xn−1Xn−1Wn−1Sn−1xn−1Xn−1Wn−1Sn−1

has the same three occurrences of the factorS′n−1 asVn−1. So, if U3 containsS′n−1, then the middle
occurrence ofU is insideS′n−1. But this is impossible becauseS′n−1 is a rather short suffix ofWn−1 and
the whole wordXnWn is cube-free. Therefore,U3 should end inside the prefix ¯xn−1Xn−1Wn−1Sn−1 of
XnWn, like in the following picture.

pn−1

S′n xn

U U U

x̄n−1Xn−1Wn−1Sn−1xn−1Xn−1Wn−1Sn−1xn−1Xn−1Wn−1Sn−1 Sn

Using the same parity argument as above, we conclude that theword S′nxnXn = S′nP′
n is cube-free and,

moreover,U3 should contain the prefixaabaaof the wordWn−1. Two cases are to be considered: either
aabaa is a factor ofU or aabaaoccurs inU3 only twice, on the borders of consecutiveU ’s. The
second case is impossible, because two closest occurrencesof aabaain Wn−1 are separated by the factor
babaababbaabbabaabaabbwhich does not containP′

n as a suffix. For the first case, we get that some
(not the leftmost) occurrence ofaabaain U3 is preceded by the concatenation of some suffix ofS′n and
the wordP′

n. If this occurrence ofaabaais a prefix of someW0, then it is preceded by someP′
k, k < n.

But P′
k is not a suffix ofP′

n, a contradiction. The remaining position for this occurrence ofaabaais the
border of some wordsS′k andP′

k. But thenS′k contains the factor which is on the border betweenS′n and
P′

n, and the parity argument shows thatS′k cannot be partitioned into 2-blocks. This final contradiction
shows thatU3 cannot be a factor ofVn. The lemma is proved.

By construction, the wordXn is the fixed left extension ofWn. Now we consider the second step, that
is, the completion of such “almost uniquely” extendable word Wn to a premaximal word. The main idea
is the same as at the first step. In order to obtain a premaximalword of leveln, we build the wordWn+1

in n+1 iterations by scheme (2a) and then prohibit the extension of Wn+1 by the first letter of the word
Pn. We denote the obtained premaximal word of leveln by Wn. Then

Wn = Wn+1Sn︸ ︷︷ ︸
PnWn+1Sn︸ ︷︷ ︸

PnWn+1Sn︸ ︷︷ ︸
, (5)

whereSn is a “buffer” inserted similarly toSn in order to avoid cubes at the border of the occurrences of
Wn+1 andPn. In contrast to the first step, we do not need to build a cube-free right-infinite word, because
the construction (5) is used only once. The form of the wordSn depends on the last iteration according
to Table 1; this dependence is described in Table 2. We chooseSn to be the left extension of the wordPn

within a
∞T (recall thatPn=

a
∞T(n+1. . .1)).

The above idea works without additional gadgets in all caseswhen|Xn| = n. Due to the following
obvious remark, it is enough to construct left premaximal words of leveln for all n such that|Xn| = n;
hence, we do not consider constructing the wordsWn for other values ofn.
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Table 2: the “final” suffixesSn for the corresponding iterations from Table 1. The first column contains
the number of the last iteration.

Iteration no. Prohibitions
(n) (Start) Sn−1

k
k+1 x xx
k+3 x x
k+4 x λ
k+5 x xxxx
k+7 x xx
k+9 x xx
k+11 x x
k+12 x λ
k+13 x λ
k+15 x x
k+16 x λ
k+18 xxx xx
k+19
k+20 x λ
k+23 xxx xx
k+25 x xx
k+27 x x
k+28 x λ
k+29 x λ
k+31 x x

Iteration no. Prohibitions
(n) (Start) Sn−1

k x λ
k+1
k+3 xxx x
k+4 x λ
k+5
k+7 xxx xx
k+9 x xx
k+11 x x
k+12 x λ
k+13 x λ
k+15 x x
k+16 x λ
k+18
k+19 xxx x
k+20 x λ
k+23 xxx xx
k+25 x xx
k+27 x x
k+28 x λ
k+29 x λ
k+31 x xx

Remark 5. In order to prove the Theorem 2, it is sufficient to show the existence of left premaximal
words of level n for infinitely many different values of n. Indeed, if a word W is left premaximal of level
n and a1 · · ·anW is a left maximal word, then the word anW is left premaximal of level n−1.

Using the facts thatWn+1 ∈CF, SnPn ∈TM, and the suffixS′n of Wn+1 has no long Thue-Morse factors
(this is the property of anyψ-image), we prove the following lemma. The proof resembles the one of
Lemma 3.

Lemma 4. The word XnWn is cube-free for all n∈ N0.

Since the wordPnWn is a cube by (5) and at the same timePn = Xn+1 is the fixed left context ofWn+1,
we conclude thatXn is the longest left context of the wordWn. Theorem 2 is proved.

Remark 6. For any n, the wordrev(Wn) =Wn(|Wn|) · · ·Wn(1) is right premaximal of level n.

Remark 7. Our construction provides an upper bound for the length of the shortest left premaximal
word of any given level n. The results of [4] suggest that thislength is exponential in n. Let l(n) = |Wn|.
For nontrivial iterations, we have l(n) = 3l(n−1)+O(n). It is well known that two successive letters
in the Thue-Morse word are equal with probability1/3. Thus, to obtain Wn, we make approximately
2n/3 nontrivial iterations. So, l(n) is exponential at base32/3 ≈ 2.08. The same property holds for
|Wn|= 3l(n+1)+O(n). It is interesting whether this asymptotics is the best possible.
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Sketch of the proof of Theorem 3.Similar to Remark 5, it is enough to build premaximal words oflevel
(ni ,ni) for some infinite sequencen1 < n2 < .. . < ni < .. . of positive integers. We takeni = 32i + 3
(Table 2 indicates thatSni = λ , which makes the construction easier). The natural idea is to concatenate
left premaximal and right premaximal words through some “buffer” word. But we cannot use the words
Wn for this purpose, because all wordsXnWn appear to be right maximal.

So, we modify the last step in constructing left premaximal words as follows. The proof of Lemma 3
implies that the wordXnWnSn · · ·Sn+l is cube-free for anyl . So, we put

W̃ni = Wni+1Sni+1Sni+2
︸ ︷︷ ︸

PniWni+1Sni+1Sni+2
︸ ︷︷ ︸

PniWni+1Sni+1Sni+2
︸ ︷︷ ︸

.

By Table 1,Sni+3 = λ andSni+4(1) 6= Sni+1(1) = x. The proof of the fact thatXniW̃ni ∈ CF reproduces
the proof of Lemma 4. Recall thatSni+1(1) = Pni(1) by (S1), yielding that this letter breaks the period
of Wni+1 (see (2b)). On the other hand, the letter ¯x breaks the global period of the word̃Wni . Hence,
the conditionXni+1Wni+1Sni+1 · · ·Sni+l ∈ CF implies XniW̃ni Sni+3 · · ·Sni+l ∈ CF for any l . Thus,W̃ni is
infinitely extendable to the right, left premaximal word of levelni .

Choose an evenmsuch that|XniW̃ni |< 2m−2 and consider the word̃Wni ,ni = W̃nT x̄
mrev(W̃n):

W̃ni rev(W̃ni )

W0 S′ni+2 rev(S′ni+2)T x̄
mW̃ni ,ni=

It remains to prove that the wordXniW̃ni ,ni rev(Xni ) is cube-free. By the choice ofm and overlap-
freeness ofT x̄

m, no cube can contain the factorT x̄
m. So, by symmetry, it is enough to check that the

word U = XniW̃ni T
x̄
m is cube-free. Assume to the contrary that it contains a cubeYYY. Recall that the

word XniW̃ni is cube-free. Since the first letter ofT x̄
m breaks the period ofXniW̃n, one has|Y| < per(W̃ni ).

Consider the rightmost factoraabaain U ; it is inside the factorW0 immediately before the suffixS′ni+2

of W̃n. If this factor belongs toYYY, then |Y| symbols to the left we have anotheraabaa, followed
by S′ni+2. Then |Y| = per(W̃ni ), a contradiction. Hence,YYYhas no factorsaabaa, i.e., is a factor of
abaabaS′ni+2T x̄

m. One can check that the wordS′ni+2 contains no Thue-Morse factors of length> 48. The
shorter factors can be checked by brute force.

Thus, the word̃Wni ,ni is premaximal of level (ni ,ni ). The theorem is proved.
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