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In recent years codes that are not Uniquely Decipherable (UD) have been studied partitioning them
in classes that localize the ambiguities of the code. A natural question is how we can extend the
notion of maximality to codes that are notUD. In this paper we give an answer to this question.
To do this we introduce a partial order in the set of submonoids of a monoid showing the existence, in
this poset, of maximal elements that we callfull monoids. Then a set of generators of a full monoid
is, by definition, a maximal code. We show how this definition extends, in a natural way, the existing
definition concerningUD codes and we find a characteristic property of a monoid generated by a
maximalUD code.

1 Introduction

At the beginning, in the context of information theory, the word codehas denoted what we call here
Uniquely Decipherable (UD) code, that is a set of words with the property that every concatenation of
words of the set (calledmessage) has an unique decomposition in code words. This notion, in the next
years, has been weakened so we call here code just a set of non-empty words.

A notion weaker than uniquely decipherability has been usedin several situations: to investigate
natural languages (see [7]) or to study situations in which it is allowed to recover the original message
up to a permutation of the code words (see [10], [11], [9]) or even when the only information to recover
is the number of code words (see [12]). In other cases the study has been oriented toward sets of words
with a constraint source (see [5]). In [8], Guzmán has been introduced the notion ofvarietyof codes to
study, in a general approach, decipherability conditions weaker thanUD.

In [4], studying varieties of codes under the aspect of uniform distribution of probability, we noted
that the construction, introduced by Ehrenfeucht and Rozemberg in [6], for embedding a regularUD
code in a complete and regularUD code, also works in the ambit of varieties of codes: the new words,
introduced by the construction, do not create new relationsbetween code words. Indeed the only relations
between the code words are that existing before the construction.
This observation has lead to deepen the study of the relations that arise in a set of non-empty words and
so in [3], generalizing a construction used in [4], we introduced the notion ofcoding partition. Roughly
speaking a partition of a code is a coding partition if any message has a unique factorization in blocks: a
block is the concatenation of words from one class of the partition, and consecutive blocks are composed
by words from different classes of the partition. In this case the possible ambiguities of the code are
confined in the classes of the partition.

In [2], the very important class of maximalUD codes is studied. In the case of thinUD codes, is
known, for example, the equivalence between maximality andcompleteness.
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In this paper we define the maximality of a code by an algebraicproperty of the monoid generated
by the code itself. We show that this definition of maximalitygeneralizes the existing one concerning
UD codes. We present, moreover, some classical result onUD codes that we can easily re-establish in
the general case.

2 Partitions of a code

Let A be an alphabet. We denote byA∗ the set of finite words over the alphabetA, and byA+ the set of
non-empty finite words.A∗ is a monoid under the concatenation operation of two words, with the empty
word as the neutral element. Acode Xis here a subset ofA+. Its elements are calledcode words, the
elements ofX∗ messages.

A codeX is said to beuniquely decipherable(UD) if every message has a unique factorization into
code words, i.e. the equality

x1x2 · · ·xn = y1y2 · · ·ym,

x1,x2, . . . ,xn, y1,y2, . . . ,ym ∈ X, implies n= m and x1 = y1, . . . ,xn = yn.

Let X be a code and let
P= {Xi | i ∈ I}

be a partition ofX i.e.,
⋃

i∈I Xi = X andXi ∩Xj = /0 iff i 6= j.
A P- f actorizationof a messagew∈ X+ is a factorizationw= z1z2 · · ·zt , where

• for eachi, zi ∈ X+
k , for somek∈ I

• if t > 1, zi ∈ X+
k ⇒ zi+1 /∈ X+

k (1≤ i ≤ t −1).

The partitionP is called acoding partitionif any elementw∈ X+ has aunique P- f actorization, i.e.
if

w= z1z2 · · ·zs = u1u2 · · ·ut ,

wherez1z2 · · ·zs, u1u2 · · ·ut areP- f actorizationsof w, thens= t andzi = ui for i = 1, . . . ,s.
We observe that the trivial partitionP= {X} is always a coding partition.

Let w∈ A+ be a word. Afactorizationof w is a sequence of words(vi)1≤i≤s such thatw= v1v2 · · ·vs.
Let X be a code. Arelation is a pair of factorizationsx1x2 · · ·xs = y1y2 · · ·yt into code words of a same
messagez∈ X+; the relation is said non-trivial if the factorizations aredistinct. In the sequel, when no
confusion arises, sometimes we will denote byzboth the “word”zand therelation x1x2 · · ·xs= y1y2 · · ·yt .
We say that the relationx1x2 · · ·xs= y1y2 · · ·yt is primeif for all i < sand for all j < t one hasx1x2 · · ·xi 6=
y1y2 · · ·y j .

In [3], the following theorem is proved.

Theorem 2.1 Let P= {Xi | i ∈ I} be a partition of a code X. The partition P is a coding partition iff for
every prime relation x1x2 · · ·xs = y1y2 · · ·yt , the code words xi ,y j belong to the same component of the
partition.

Recall that there is a natural partial order between the partitions of a setX: if P1 andP2 are two
partitions ofX thenP1 ≤ P2 if the elements ofP1 are unions of elements ofP2 and we say thatP2 is finer
thenP1. Then from Theorem 2.1 we have the following corollary.
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Corollary 2.2 Let P and P′ be two partitions of a code X with P≤ P′. If P′ is a coding partition then P
also.

What follows, till Theorem 2.7, is stated in [3].

Theorem 2.3 The set of the coding partitions of a code X is a complete lattice.

As a consequence of previous theorem we can give the following definition. Given a codeX, thefinest
coding partitionP of X is called thecharacteristicpartition ofX and it is denoted byP(X).

A codeX is calledambiguousif it is not UD. It is calledtotally ambiguous(TA) if |X|> 1 andP(X)
is the trivial partition:P(X) = {X}.

Remark 2.4 So UD codes and TA codes correspond to the two extremal cases since a code is UD iff
P(X) = {{x} | x∈ X}.

Let X be a code and letP(X) be the characteristic partition ofX. Let X0 be the union of all classes of
P(X) having only one element, i.e. of all classesZ ∈ P(X) such that|Z|= 1. The codeX0 is aUD code
and is called theunambiguous componentof X. FromP(X) one then derives another partition ofX

PC(X) = {Xi | i ≥ 0},

where{Xi | i ≥ 1} is the set of classes ofP(X) of size greater than 1. If there are such setsXi with i ≥ 1,
then they areTA. They are called theTA componentsof X. By Corollary 2.2 we have thatPC(X) is a
coding partition (indeedPC(X) ≤ P(X)) and it is called thecanonical coding partitionof X: it defines
a canonical decompositionof a codeX in at most one unambiguous component and a (possibly empty)
set of TA components. Roughly speaking, if a codeX is not UD, then its canonical decomposition,
on one hand separates the unambiguous component of the code (if any), and, on the other, localizes
the ambiguities inside theTA components of the code. On the contrary, ifX is UD, then its canonical
decomposition contains only the unambiguous componentX0. Moreover ifX is UD then every partition
of X is a coding partition.

Theorem 2.5 There is a Sardinas-Patterson like algorithm to compute thecanonical coding partition of
a finite code X.

Example 2.6 Let us consider the code X⊆ {0,1}∗, X = {00,0010,1000,11,1111,
010,011}. In [3] it is shown that the canonical coding partition of X isPC(X) = {X0,X1,X2} with
X0 = {010,011}, X1 = {00,0010,1000}, X2 = {11,1111}.

Theorem 2.7 Given a regular code X and a partition P= {X1, . . . ,Xn} of X such that Xi, for i = 1, . . . ,n,
is a regular set, it is decidable whether P is a coding partition of X.

Still in [3], it was conjectured thatif X is regular, the number of classes of PC(X) is finite and each
class of PC(X) is a regular set.

Finally, the positive answer has given in [1] where the following theorem and corollary are proved.

Theorem 2.8 The canonical partition of a regular code is finite and regular. Its classes can be effectively
computed.

Corollary 2.9 Given a regular code X and a regular partition P= {X1,X2, . . . ,Xn} of X, it is decidable
whether P is the canonical coding parition of X.
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From the definition of coding partition we deduce immediately the next theorem that gives a tool to
construct infinitely manyUD codes starting from any non-TA code with more than one code word.

Theorem 2.10 Let P= {Xi | i ∈ I} be a coding partition of a code with|I |> 1.
Then the sets{X+

i1 X+
i2 · · ·X

+
in | n≥ 2, i j ∈ I , i j 6= i j+1 ∀ 1≤ j < n, in 6= i1} are UD codes.

We conclude this section with the following theorem concerning the regularity of the classes of a
finite coding partition of a regular code.

Theorem 2.11 Let{Yj | j ∈ J} be a coding partition of a regular code X and let X0 be the unambiguous
component of X. If there exists j1 ∈ J such that Yj1 is not regular then we have Yj1 ∩X0 6= /0. Moreover if
J is finite then there exists j2 ∈ J, j2 6= j1 such that also Yj2 is not regular and Yj2 ∩X0 6= /0.

Proof. Let PC(X) = {X0,X1, . . . ,Xn} be the regular and finite canonical coding partition ofX. If, by con-
tradiction,Yj1 ∩X0 = /0 then, recalling howPC(X) rises fromP(X) and recalling thatP(X) is the finest
coding partition ofX, we see thatYj1 is a finite union of some of the regular codes{X1, . . . ,Xn} and so it
is regular: a contradiction. ThenYj1 ∩X0 6= /0. Moreover ifJ is finite then if, by contradiction, all theYj

for j 6= j1 where regular, thenYj1 where the complement, with respect to the regular codeX of a regular
code and soYj1 where regular against the hypothesis. Then there existsj2 ∈ J, j2 6= j1 such that alsoYj2
is not regular and, by the first part of the proof,Yj2 ∩X0 6= /0. �

Example 2.12 Let X be the regular UD code X= a+b+. Then X0 =X and put Y1 := {anbn | n≥ 1},Y2 :=
X \Y1 we have that P= {Y1,Y2} is a coding partition of X in two non-regular classes.

3 Free factorizations of a monoid

In this section the previous results are restated in an algebraic setting making use of the free product of
monoids.

Given a codeX ⊆ A∗ we can study the properties of the monoidM = X∗. On the contrary, if we
start with a monoidM ⊆ A∗, we can study the characteristic properties of the different setsX ⊆ A+

of generators ofM. We recall that any submonoidM of A∗ has a unique minimal set of generators
X = (Mr1)r (Mr1)2, where 1 is the empty word (see [2]); in such a case we say thatX is the base of
M. In general we say that a codeX is a baseif X is the base ofX∗.
It is natural to investigate how the properties of a partition of a code are related to those of the monoids
generated by the classes of the partition.

Given a partitionP= {Xi | i ∈ I} of a codeX ⊆ A+, the condition that every wordw∈ X+ admits a
uniqueP- f actorizationhas a natural algebraic interpretation in terms of free product of monoids.

Let M be a monoid generated by submonoidsMλ ,λ ∈ Λ, and letm∈ M. An expression ofm of
the form m1m2 · · ·mr , wherer ≥ 0, 1 6= mi ∈ Mλi

, λi 6= λi+1, is said inreduced formwith respect to
Mλ ’s. By definition,M is the free product of theMλ ’s iff every element ofM has an unique expression
in reduced form with respect toMλ ’s and we writeM = Frλ∈Λ Mλ . In the finite case we also write
M = Mλ1

∗ · · · ∗Mλn
.

The previous results can be expressed then in the following form.

Theorem 3.1 Let X⊆ A+ be a code, let P= {Xi | i ∈ I} be a partition of X and let M= X∗, Mi = X∗
i

with i ∈ I. If P is a coding partition of X then M is the free product of the Mi ’s. Conversely let M be
the free product of the submonoids Mi ’s, let Xi be sets of generators of Mi and let X=

⋃
i∈I Xi. Then

P= {Xi | i ∈ I} it is a coding partition of X.
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It’s natural at this point to introduce the notion of free factorizations of a monoid.

Definition 3.2 A family {Mλ |λ ∈ Λ} of submonoids of M is afree factorizationof M if M is the free
product of the Mλ ’s. The Mλ ’s are called thefree factorsof the free factorization; moreover we say that
a monoid M isfreely indecomposableif M cannot be expressed as a free product of nontrivial monoids.

We stress that a free factor is not, in general, a free monoid.

Remark 3.3 We note that a monoid M is freely indecomposable iff any set ofgenerators of M is a totally
ambiguous code. From another hand we have that a code X is UD iff X∗ = Frx∈X {x}∗ so, in particular,
the monoid X∗ is free.

The next proposition comes directly from the definition of free product of monoids: it is the Corollary
2.2 restated in terms of monoids.

Proposition 3.4 Let M=Frλ∈Λ Mλ and let{Λµ |µ ∈ Γ} be a partition ofΛ. Set∀µ ∈ Γ, Mµ the monoid
generated by{Mλ |λ ∈ Λµ} then Mµ = Frλ∈Λµ Mλ and M= Frµ∈Γ Mµ .

Starting with an arbitrary family of submonoids ofA∗, analogously to what we have made with a
codeX, we can partition the family in classes in such a way that the monoid generated by the family is
the free product of the monoids generated by each class of thepartition. On the contrary, if we have a
monoidM, we can consider the family of all the free factorizations ofM and define a partial order on
this family.

Definition 3.5 Let F1 = {Mµ |µ ∈ Λ1}, F2 = {Mλ |λ ∈ Λ2} be two free factorizations of a monoid M.
We say that F1 ≤ F2 if there exists a partition{Λµ |µ ∈ Λ1} of Λ2 such that for eachµ , Mµ = Frλ∈Λµ Mλ .

By Theorem 2.3 and Theorem 3.1 we deduce the following theorem.

Theorem 3.6 Given a monoid M the family of the free factorizations of M is acomplete lattice.

As in the case of the canonical partition of a code,the finest free factorization of a monoidM is
called thecharacteristicfree factorization ofM and it is denoted byF (M) or, if we want to make the
free factors explicit,F (M) = Frλ∈Λ Mλ .

Now letM0 be the monoid generated by all the free factors ofF (M) having only one generator. The
monoidM0 is then a free monoid and it is called thefree componentof M. FromF (M) one then derives
another decomposition ofM

FC(M) = M0∗Frλ∈Λ Mλ ,

where theMλ ’s are the free factors ofF (M) having more then one generator. If there are such monoids
Mλ then they are not free and they are, of course, freely indecomposable. They are called thefreely
indecomposable componentsof M. By Proposition 3.4 we have thatFC(X) is a free factorization of
M (indeedFC(M) ≤ F (M)) and it is called thecanonical free factorizationof M: it defines acanon-
ical decompositionof a monoidM in at most one free component and a (possibly empty) set of freely
indecomposable components.

Example 3.7 Let A= {a1,a2, . . .}. ThenF (A∗) = (a∗1)∗(a
∗
2)∗· · · , andFC(A∗) = {A∗}. Then the poset

of the free factorizations of A∗ are in bijection with the poset of the alphabet A.

Already in [1], the following equivalent formulation of Theorem 2.8 is given.
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Theorem 3.8 Any regular submonoid M⊆ A∗ admits a canonical decomposition into a free product
of at most one regular free submonoid and finitely many (possibly zero) regular freely indecomposable
submonoids.

Example 3.9 Let A= {a,b,c,d} and let X⊆A+ be the following regular code: X= a+bb+c+ad∗b+
bc∗bb.
In [1] it is shown that PC(X) = {X0,X1} where X0 = ad+b and X1 = a+ab+bb+c+bc∗bb. Then the
canonical decomposition of the regular submonoid X∗ is X∗ = (X∗

0 )∗ (X
∗
1).

4 Full monoids and maximal codes

Using ideas of previous section we introduce a partial orderin the family of the submonoids ofA∗. We
will prove that, in this poset, there exist maximal elements. We call this maximal elementsfull monoids
and we will say that a code ismaximalif it is the base of a full monoid. We show that this definition of
maximality extends that concerningUD codes and, with Theorem 4.14, we will give a characterization
of maximalUD codes depending only on the monoid they generate.

Definition 4.1 Let M,N ⊆ A∗ be monoids we say that M� N if there exists a monoid L⊆ A∗ such that
N = M ∗L.

Proposition 4.2 The relation� is a partial order on the set of submonoids of A∗.

Proof. We need to prove that� is transitive and antisymmetric. IfL � M andM � N then∃L′,M′ such
thatM = L ∗L′ andN = M ∗M′. ThenN = (L ∗L′) ∗M′ = L ∗ (L′ ∗M′) and soN � L. Now let M � N
andN � M soM = N∗N′ andN = M ∗M′ for some monoidsM′,N′. ThenM = M ∗M′ ∗N′ thusM′,N′

are trivial monoids and soM = N. �

The first question is, given a monoidN, if there exists a monoidM with N ⊆ M andM maximal with
respect to the partial order�.

To answer to the previous question we first prove the following lemma.

Lemma 4.3 Let M= M1∗M2 and let X,X1,X2 be the base of M,M1,M2 respectively. Then X= X1∪X2.

Proof. SinceM = M1 ∗M2 andX1 ,X2 are the bases ofM1 andM2 respectively, it is clear thatX1∪X2

is a set of generators ofM. Let, by contradiction,X ( X1∪X2 and letx′ ∈ (X1∪X2)rX. We can as-
sume thatx′ ∈ X1. SinceX is a set of generators ofM, x′ = x1x2 · · ·xn with xi ∈ X. But x′ ∈ M1 and, by
the uniqueness of the reduced form with respect toM1 andM2, we havexi ∈ M1, ∀ 1 ≤ i ≤ n, and so
xi ∈ X1, ∀ 1≤ i ≤ n. This shows thatX1r{x′} is a set of generators ofM1: a contradiction. ThusX1∪X2

is a minimal set of generators ofM and we have the thesis. �

As an obvious generalization we have the following

Corollary 4.4 Let M=Frλ∈Λ Mλ and let Xλ , λ ∈Λ and X be the bases of Mλ , λ ∈Λ and M respectively.
Then X= ∪λ∈Λ Xλ .

We note that without Lemma 4.3, by Theorem 3.1, we only say that Y :=X1∪X2 is a set of generators
of M and thatP= {X1,X2} is a coding partition ofY. Lemma 4.3 says thatY is the base ofM.

Now we can prove the following theorem.
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Theorem 4.5 Any submonoid M⊆ A∗ is contained in a submonoid N⊆ A∗, which is maximal with
respect to� and such that M� N.

Proof. We will make use of Zorn’s lemma. LetF be the family of all the submonoidsP⊆ A∗, ordered
by �, such thatM � P, ∀P∈ F and let{Mλ |λ ∈ Λ} be a chain inF. If λ < γ then there exists a sub-
monoidHλ ,γ ⊆ A∗ such thatMγ = Mλ ∗Hλ ,γ and so if we callXγ , Xλ andXλ ,γ the bases ofMγ , Mλ , Hλ ,γ
respectively, by Lemma 4.3,Xγ = Xλ ∪Xλ ,γ and thenXλ ( Xγ . Now, ∀ λ ∈ Λ, let Xλ the base ofMλ ,
Y :=∪λ∈Λ Xλ and letN be the monoid generated byY. We show thatMλ �N, ∀ λ ∈Λ. LetZλ :=Y\Xλ
and letHλ the submonoid generated byZλ . We will prove thatN = Mλ ∗Hλ . Let m∈ N and let us sup-
pose, by contradiction, thatm has two different expressions in reduced form with respect to Mλ ,Hλ so
m= m1m2 · · ·mr = m′

1m′
2 · · ·m

′
s with r,s≥ 1. SinceN is generated byY thenm= y1y2 · · ·yh = y′1y′2 · · ·y

′
k

for certainyi ,y′j ∈Y and, since the two expressions in reduced form with respect to Mλ ,Hλ are different,
∃y∈ {y1,y2, . . . ,yh,y′1,y

′
2, . . . ,y

′
k} such thaty /∈ Xλ . Let λ1 ∈ Λ such thatλ1 > λ andyi ,y′j ∈ Xλ1

, ∀ i, j.
ThenMλ1

= Mλ ∗Hλ ,λ1
for a certainHλ ,λ1

⊆ A∗. Sincem,mi,m′
j ∈ Mλ1

, ∀ i, j, then the two different ex-
pressions ofm in reduced form with respect toMλ ,Hλ are still two different expressions in reduced form
with respect toMλ , Hλ ,λ1

. This contradiction shows thatN = Mλ ∗Hλ and thusMλ � N, ∀ λ ∈ Λ. Since
M � Mλ , ∀ λ ∈ Λ thenM � N soN ∈ F and it is a upper bound for the chain{Mλ |λ ∈ Λ}. Invoking
Zorn’s lemma we have the thesis. �

Remark 4.6 By Example 3.7 we see that if M is not generated by a subset of the alphabet A, then the
maximal monoid N which the previous theorem refers to, is properly contained in A∗ i.e. M� N ( A∗.

We give now the following definition.

Definition 4.7 We say that a submonoid M of A∗ is full if it is maximal with respect to the partial
order�.

Remark 4.8 From the definition we have that if M′ ⊆ M and M′ is full then also M is full.

A first statement on full monoids is given by the following proposition.

Proposition 4.9 Let M⊆ A∗ be a monoid. If M is maximal with respect to the inclusion order ⊆ then it
is full.

Proof. We will prove that ifM is not full then it is not maximal with respect to the inclusion order⊆. If
M is not full then there exist a monoidN ⊆ A∗ and a non trivial monoidM1 ⊆ A∗ such thatN = M ∗M1.
Let X the base ofM1, x∈ X and letM2 be the monoid(x2)∗. Then we haveM ( M ∗M2 ( N. �

We recall that the submonoids ofA∗ maximal with respect to the inclusion order⊆ are “few”: in
fact it is easy to see that a submonoidM of A∗ is maximal with respect to the inclusion order⊆ iff
M = A∗r{a} for a certaina∈ A.

A UD codeX ⊆ A+ is said to be amaximal UDcode ifX is not properly contained in any otherUD
code overA.

Now we extend the notion of maximality to codes that are notUD.

Definition 4.10 A code X⊆ A+ is saidmaximalif the monoid X∗ is full.

The next theorem shows how this notion generalizes that of maximality given forUD codes.
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Theorem 4.11 Let X be a UD code. Then X is a maximal UD code iff X∗ is a full monoid.

Proof. If X is a maximalUD code then∀w∈ A+, X′ := X∪{w} is not aUD code and, by Remark 3.3
and Proposition 3.4, this imply that∀w∈ A+, (X′)∗ is not the free product ofX∗ and{w}∗ and this is
true iff X∗ is full. �

A free monoidM ⊆ A∗ is saidmaximal freeif M 6= A∗ andM is not properly contained in any other
free monoid different fromA∗.

If a free monoid is maximal free then it is full. Indeed if a free monoid is maximal free then its base
is a maximalUD code (see [2]) so by Theorem 4.11 the monoid is full.
We have proved then the following theorem.

Theorem 4.12 Let M be a free monoid. If M is maximal free then it is full.

Remark 4.13 In [2] it is proved that uniform codes An are maximal UD codes∀n ≥ 1 and it is been
underlined that with n= lm, l ,m> 1, we have(An)∗ ( (Am)∗ ( A∗. This has two consequences: from
one hand, by Theorem 4.11, we can see that the inverse of Proposition 4.9 is false, moreover, since the
monoids(An)∗ are free, again by Theorem 4.11, also the inverse of Theorem 4.12 is false.

Recalling that ifM is a free monoid then its base is aUD code, then from Theorem 4.11 we have
the following characterization of a maximalUD codes in terms of algebraic properties of the monoid
generated by the code itself.

Theorem 4.14 Let X⊆ A+ be a code that is a base. Then X is a maximal UD code iff X∗ is a full and
free submonoid of A∗.

We see now how with this notion of maximality we will recover some results concerning theUD
codes.

We first recall some definitions.
A word w∈ A∗ is afactor of a wordz∈ A∗ if there existu,v∈ A∗ such thatz= uwv. For anyX ⊆ A∗ let
F(X) denote the set of factors of words inX.
A setX ⊆ A∗ is denseif F(X) = A∗. A set that is not dense is calledthin.
Finally, a setX ⊆ A∗ is completeif X∗ is dense.

Theorem 4.15 Let X⊆ A+ be a maximal code then it is a complete set.

Proof. Let X be a code over the alphabetA, with card(A) ≥ 2 (the casecard(A) < 2 is trivial). We
will prove that if X is not complete thenX∗ is not full. If X is not complete, there exists a wordv∈ A∗

such thatv does not belong toF(X∗). Let a be the first letter ofv and letb ∈ Ar {a}. Consider the
word w= vb|v|−1. By construction,w is unbordered, i.e. no proper prefix ofw is a suffix ofw. Sincev
does not belong toF(X∗), we have that alsow does not belong toF(X∗). Let M := (X∪{w})∗ we now
prove that every wordt ∈ (X∪{w})∗ has an unique expression in reduced form with respect toX∗, {w}∗.
Indeed, sincew is unbordered, we can uniquely distinguish all occurrencesof w in t, i.e. t has a unique
factorization of the form

t = u1wu2w· · ·wun,

with n≥ 1 andui ∈ X∗, for i = 1, . . . ,n.
This shows thatM = (X∗)∗ (w∗) andX∗ is not full. �

By the previous theorem we deduce the following corollary.
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Corollary 4.16 Any full monoid M⊆ A∗ is dense in A∗.

The inverse of previous corollary is not true. Indeed the Dyck codeD overA= {a,b} is aUD dense
code and for eachx∈ D the codeDr{x} remains dense (see [2]) but it is no more a maximalUD code
and so by Theorem 4.14(Dr{x})∗ it is not full in A∗.

The next lemma holds (see [2]).

Lemma 4.17 Let X⊆ A+ be a thin and complete code. Then all words w∈ A∗ satisfy

(X∗wX∗)+∩X∗ 6= /0.

Then we can prove the following theorem.

Theorem 4.18 Let X be a thin code. If X is complete then it is maximal.

Proof. Let M ⊆ A+ be a monoid and let 16= w ∈ M. By previous lemma there existv1,v2 ∈ X∗ and
z∈ X+ such thatz= (v1wv2)

+. From thiszhas not a unique expression in reduced form with respect to
X∗ andM. ThenX∗ is full andX is a maximal code. �

Putting together the last two results we have:

Theorem 4.19 Let X⊆ A+ be a thin code. Then X is complete iff it is maximal.

Again in [2], the following result is proved.

Proposition 4.20 Any regular UD code is thin.

Indeed the proof of the cited result shows the following moregeneral proposition.

Proposition 4.21 Any regular code that is a base is thin.

Then we can conclude with the following corollary.

Corollary 4.22 Let X⊆ A+ be a regular code that is a base. Then X is complete iff it is maximal.

5 Concluding remarks

In this paper we have given a definition of maximality that extends the existing one forUD codes re-
establishing, in the general case, some classical results valid for UD codes. At this point it is interesting
to understand which, among the deep results concerning maximal UD codes, can be recovered from the
more general definitions of maximality and coding partition. (We emphasize that the notion of coding
partition generalizes that ofUD code: the “uniquely decipherability” at the level of classes of the partition
takes the place of the uniquely decipherability existing between the words of aUD code.) Two subjects
that it is possible to deepen are composition of codes and probability distributions.
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