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Classically in combinatorics on words one studies unavoidable regularities that appear in sufficiently
long strings of symbols over a fixed size alphabet. In this paper we take another viewpoint and focus
on combinatorial properties of long words in which the number of occurrences of any symbol is
restritced by a fixed constant. We then demonstrate the connection of these properties to constructing
multicollision attacks on so called generalized iterated hash functions.

1 Introduction

In combinatorics on words, the theory of ’unavoidable regularities’ usually concerns properties of long
words over a fixed finite alphabet. Famous classical results in general combinatorics and algebra such
as theorems of Ramsey, Shirshov and van der Waerden can then be straightforwardly exploited ([2],
[9], [11], [12], [13]). The theory can be applied in the studyof finiteness conditions for semigroups
and (through the concept of syntactic monoid) also in regular languages and finite automata. To give
the reader a view of the traditional basic results in unavoidable regularities we list some of its most
noteworthy achievements.

Ramsey’s Theorem immediately implies

Theorem 1 (Repeated Patterns [2]) For all positive integers m and n there exists a positive integer
R(m,n) satisfying the following. Given an alphabet A and a partition {Ai}m

i=1 of A+ into m sets, if
w∈ A+ is any word of length at least R(m,n), then w is in A∗An

j A
∗ for some j∈ {1,2, . . . ,m}.

Let A be an alphabet totally ordered by<. We extend the order< to thelexiographic order<lex of
A∗ as follows. For allu,v∈ A∗: u<lex v if eitherv∈ uA+ or u= xayandv= xbzfor somex,y,z∈ A∗ and
a,b∈ A for which a< b.

Given a positive integern, the wordw∈ A∗ is n-dividedif there exist wordsu,x1,x2, . . . ,xn,v in A∗

such thatw= ux1x2 · · ·xnv and
w<lex uxσ(1)xσ(2) · · ·xσ(n)v

for any nontrivial permutationσ : {1,2, . . . ,n} → {1,2, . . . ,n}.

Theorem 2 (Shirshov [8, 9, 12]) Let A be an alphabet of k symbols and p and n positive integers with
p≥ 2n. There then exists a positive integer S(k, p,n) such that any word in A∗ of length at least S(k, p,n)
either is n-divided or contains a pth power of a nonempty wordof length at most n−1.

Let w= a1a2 · · ·am whereai ∈ A for i = 1,2, . . . ,m. A cadenceof w is any sequence(i1, i2, . . . , is) of
integers such that

0< i1 < i2 < · · ·< is and ai1 = ai2 = · · ·= ais .
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Here the numbers is theorder of the cadence. The cadence(i1, i2, . . . , is) is arithmetic if there exists a
positive integerd such thati j = i1+( j −1)d for j = 1,2, . . . ,s.

The celebrated van der Waerden’s theorem can be reformulated in words as follows.

Theorem 3 (van der Waerden [8, 9]) Let A be an alphabet of k symbols and s a positive integer. There
then exists a positive integer W(k,s) such that any word in A∗ of length at least W(k,s) possesses an
arithmetic cadence of order s.

Combinatorial problems are also encountered in information security, for example, when design-
ing and investigating hash functions, techniques used in message authentication and digital signature
schemes. Ahash function of length n(wheren ∈ N+) is a mappingH : {0,1}∗ → {0,1}n. For com-
puting resource reasons, practical hash functions are often iterative, i.e., they are based on some finite
compression function and an initial hash value. For more details, see subsection 3.1.

An ideal hash functionH : {0,1}∗ → {0,1}n is a (variable input length) random oracle: for each
x∈ {0,1}∗, the valueH(x) ∈ {0,1}n is chosen uniformly at random.

There are three main security properties that usually are required from a hash functionH: collision
resistance, preimage resistance, andsecond preimage resistance.

Collision resistance: It is computationally infeasible to findx,x′ ∈ {0,1}∗, x 6= x′, such thatH(x) =
H(x′).

Preimage resistance: Given anyy∈ {0,1}n, it is computationally infeasible to findx∈ {0,1}∗ such
thatH(x) = y.

Second preimage resistance: Given anyx ∈ {0,1}∗, it is computationally infeasible to findx′ ∈
{0,1}∗, x 6= x′, such thatH(x) = H(x′).

If we want to consider the resistance properties mathematically, the concept ’computationally infea-
sible’ should be rigorously defined. Then the security ofH is compared to the security of a random
oracle.

We thus say thatH is collision resistant (or possesses the collision resistance property) if to find
x,x′ ∈ {0,1}∗, x 6= x′, such thatH(x) = H(x′) is (approximately) as difficult as to findz,z′ ∈ {0,1}∗, z 6= z′,
such thatG(z) = G′(z′) for any random oracle hash functionG of lengthn.

The concepts of preimage resistance and second preimage resistance can be defined analogously.
Given a setC⊆ {0,1}∗ of finite cardinalityk> 1, we say thatC is ank-collision onH if H(x) = H(x′)

for all x,x′ ∈C. Any 2-collison is also called a collision (onH).
The sharpened definitions allow us to define a fourth securityproperty, the so called multicollision

resistance: The hash functionH is multicollision resistantif, for eachk∈ N+, to find ank-collison onH
is (approximately) as difficult as to find ank-collison on any random oracle hash functionG of lengthn.

Our conciderations are connected to multicollison resistance. Given a messagex= x1x2 · · ·xl where
x1,x2, . . . ,xl are the (equally long) blocks ofx, the value of a generalized iterated hash function onx is
based on the values of a finite compression function on the message blocksx1,x2, . . . ,xl . A nonempty
word α over the alphabet{1,2, . . . , l} may then tell us in which order and how many times each blockxi

is expended by the compression function when producing the value of the respective generalized iterated
hash function. Since the length of messages vary, we get to consider sequences of wordsα1,α2, . . . in
which, for eachl ∈ {1,2, . . .}, the wordαl ∈ {1,2, . . . , l}∗ is related to messages withl blocks. Practical
applications state one more limitation: given a message of any length, a fixed block is to be consumed
by the compression function only a restricted number (q, say) of times when computing the generalized
iterated hash function value. Thus in the sequenceα1,α2, . . . we assume that for eachl ∈ {1,2, . . .} and
m∈ {1,2, . . . , l}, the number|αl |m of occurrences of the symbolm in the wordαl is at mostq.
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What can be said about the general combinatorial propertiesof the wordαl when l grows? More
generally: which kind of unavoidable regularities appear in sufficiently long words in which the number
of occurrences of any symbol is bounded by a fixed constant?

As is easy to imagine, the regularities in the wordsαl weaken the respective generalized iterated
hash function against multicollision attacks. This topic was first studied in [3], see also [4, 10, 1, 6, 7, 5].
We shall present combinatorial results on words which implythat q-bounded generalized iterated hash
functions are not multicollision resistant.

We proceed in the following order. In the next section basic concepts are briefly given. In the
third section we first introduce the basics of generalized iterated hash functions. The connection to
combinatorics on words is then established. The fourth section contains the necessary combinatorial
results. Finally, the last section contains conclusions and further research proposals.

2 Preliminaries

Let N = {0,1,2, . . .} be the set of all natural numbers andN+ = N\{0}. For each finite setS, let |S| be
thecardinality of S that is to say, the number of elements inS.

Let A be a finite alphabet andα ∈ A+. The length of the wordα is denoted by|α |; for eacha∈ A,
let |α |a be the number of occurrences of the lettera in α , and let alph(α) denote the set of all letters
occurring inα at least once. The empty word is denoted byε . A permutation ofA is any wordβ ∈ A+

such that|β |a = 1 for eacha∈ A.
Let B⊆ A. Then theprojection morphismfrom A∗ into B∗, denoted byΠA

B is defined byΠA
B(b) = b

if b∈ B andΠA
B(b) = ε if b∈ A\B. We writeΠB instead ofΠA

B whenA is understood. Define the word
(α)B as follows: (α)B = ε if πB(α) = ε and(α)B = a1a2 · · ·as if πB(α) ∈ a+1 a+2 · · ·a+s , wheres∈ N+,
a1,a2, . . . ,as ∈ B, andai 6= ai+1 for i = 1,2, . . . ,s−1.

3 Hash functions and collisions

In this section we first present a compact lead-in to (generalized) iterated hash functions. Later we wish
to point out how certain results in combinatorics on words are interconnected to successful multicollision
construction on these type of hash functions.

3.1 Introduction to (generalized) iterated hash functions

Let m,n ∈ N+ be such thatm> n. ThenH = {0,1}n is the set ofhash values(of lengthn) andB =
{0,1}m) is the set ofmessage blocks(of lengthm). Any w ∈ B+ is a message. Given a mappingf :
H ×B→ H, call f acompression function(of lengthn and block sizem).

Define the functionf+ : H ×B+ → H inductively as follows. For eachh∈ H, b∈ B andx∈ B+, let
f+(h,b) = f (h,b) and f+(h,bx) = f+( f (h,b),x). Note thatf+ is nothing but an iterative generalization
of the compression functionf .

Let l ∈N+ andα be a nonemptyword such that alph(α)⊆Nl . Thenα = i1i2 · · · is, wheres∈N+ and
i j ∈Nl for j = 1,2, . . . ,s. Define theiterated compression function fα : H ×Bl → H (based onα and f )
by

fα(h,b1b2 · · ·bl ) = f+(h,bi1bi2 · · ·bis)
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for eachh∈ H andb1,b2, . . . ,bl ∈ B. Note that clearlyα only declares how many times and in which
order the message blocksb1,b2, . . . ,bl are used when creating the (hash) valuefα(h,b1b2 . . .bl ) of the
messageb1b2 · · ·bl .

Givenk ∈ N+ andh0 ∈ H, a k-collision (with initial value h0) in the iterated compression function
fα is a setC⊆ Bl such that the following holds:

1. The cardinality ofC is k;

2. For all u,v∈C we havefα(h0,u) = fα(h0,v); and

3. For any pair of distinct messagesu= u1u2 · · ·ul andv= v1v2 · · ·vl in C such thatui ,vi ∈ B
for i = 1,2, . . . , l , there existsj ∈ {1,2, . . . , l} for which u j 6= v j .

For eachj ∈ N+, let nowα j ∈ N
+
j be such that alph(α j) = N j . Denoteα̂ = (α1,α2, . . .). Define the

generalized iterated hash function(a gihf for short)Hα̂, f : H ×B+ → H (based on̂α and f ) as follows:
Given the initial valueh0 ∈ H and the messagex∈ B j , j ∈ N+, let

Hα̂, f (h0,x) = fα j (h0,x) .

Thus, given any messagex of j blocks and hash valueh0, to obtain the valueHα̂, f (h0,x), we just pick
the wordα j from the sequencêα and computefα j (h0,x). For more details, see [6] and [3].

Rermark 1 A traditional iterated hash functionH : B+ → H based on f (with initial value h0 ∈ H) can
of course be defined byH(u) = f+(h0,u) for each u∈ B+. On the other handH is a generalized iterated
hash functionHα̂, f : H ×B+ → H based onα̂ and f whereα̂ = (1,1·2,1·2·3, . . .) and the initial value
is fixed as h0. Note that almost all hash functions used nowadays in practise are of this form.

Given k ∈ N+ andh0 ∈ H, a k-collision in the generalized iterated hash functionHα̂, f (with initial
value h0) is a setC of k messages such that for allu,v ∈ C, |u| = |v| and Hα̂, f (h0,u) = Hα̂, f (h0,v).
Now suppose thatC is ak-collision in Hα̂, f with initial value h0. Let l ∈ N+ be such thatC ⊆ Bl , i.e.,
the length in blocks of each message inC is l . Then, by definition, for eachu,v ∈ C, the equality
fαl (h0,u) = fαl (h0,v) holds. Since alph(αl ) =Nl (and thus each symbol inNl occurs in alph(α)), the set
C is ak-collision in fαl with initial valueh0. Thus, ak-collision in the generalized iterated hash function
Hα̂, f necessarily by definition, is ak-collision in the iterated compression functionfαl for somel ∈ N+.

Now, in our security model, theattackertries to find ak-collision inHα̂, f . We assume that the attacker
knows howHα̂, f depends on the respective compression functionf (i.e., the attacker knowŝα), but sees
f only as a black box. She/he does not know anything about the internal structure off and can only
makequeries(i.e., pairs(h,b) ∈ H ×B) on f and get the respectiveresponses(values f (h,b) ∈ H).

We thus define the(message) complexity of a k-collisionin Hα̂, f to be the expected number of queries
on the compression functionf that is needed to create a multicollision of sizek in Hα̂, f with any initial
valueh∈ H.

According to the (generalized)birthday paradox, a k-collision for any compression functionf of

lengthn can be found (with probability approx.12) by hashing(k!)
1
k 2

n(k−1)
k messages [14] if we assume

that there is no memory restrictions. Two remarks can be madeimmediately:

• In the casek= 2 approximately
√

2·2n
2 hashings (queries onf ) are needed; intuitively many of us

would expect the number to be around 2n−1.

• For eachk in N+, finding a(k+ 1)-collision consumes much more resources than finding ak-
collision.
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Of course, when attacking, for instance, against an iterated hash function based on a random oracle
compression function of lengthn, the attacker needs a lot of computing power whenn is large; to create
a 2-collison requires approximately

√
2·2n

2 queries onf and this is resource consuming.
The paper [4] presents a clever way to find a 2r -collision in the traditional iterated hash functionH (see

Remark 1) for anyr ∈N+. The attacker starts from the initial valueh0 and searches two distinct message
blocksb1, b′1 such thatf (h0,b1) = f (h0,b′1) and denotesh1 = f (h0,b1). By the birthday paradox, the
expected number of queries onf is ã2

n
2 , where ˜a is approximately 2.5. Then, for eachi = 2,3, . . . , r −1,

the attacker continues by searching message blocksbi andb′i such thatbi 6= b′i and f (hi−1,bi)= f (hi−1,b′i)
and and statinghi = f (hi−1,bi). Now the setC= {b1,b′1}×{b2,b′2}× ·· ·×{br ,b′r} is 2r -collision inH.
The expected number of queries onf is clearlyã r2

n
2 , i.e., the work the attacker is expected to do is only

r times greater than the work she or he has to do to find a single 2-collision. The size of the multicollision
grows exponentially while the need of resources increases linearly.

The question arises whether or not the ideas of Joux can be applied in a more broad setting, i.e., can
Joux’s approach be used to multicollisions in certain generalized iterated hash functions?

In the following we shall see that this indeed is possible. Call the sequencêα = (α1,α2 . . .) q-
bounded, q∈N+, if |α j |i ≤ q for eachj ∈N+ andi ∈N j . The gihfHα̂, f is q-boundedif α̂ is q-bounded.
Note that Joux’s method is easy to apply to any 1-bounded generalized iterated hash function.

Is it possible to extend Joux’s method furthermore to be adapted toq-bounded gihfs, whenq > 1?
This question has been investigated first for 2-bounded gihfs in [10] and then for anyq-bounded gihf
in [3] (see also [6]). It turned out that it is possible to create 2r -collision in anyq-bounded gihf with
O(g(n,q, r)2

n
2 ) queries onf , whereg(n,q, r) is function ofn,q andr which is polynomial with respect

to n andr but double exponential with respect toq.
The idea behind the successful construction of the attack isthe fact that sincêα is q-bounded, un-

avoidable regularities start to appear in the wordαl of α̂ whenl is increased. More accurately, choosing
l large enough, yet so that|alph(αl )| depends only polynomially onn andr (albeit double exponentially
in q), a numberp∈ {1,2, . . . ,q} and a setA⊆ alph(αl ) of cardinality|A|= np−1r can be found such that
(P1) αl = β1β2 · · ·βp the word(βi)A is a permutation ofA for i = 1,2, . . . , p; and
(P2) for anyi ∈ {1,2, . . . , p− 1}, if (βi)A = z1z2 · · ·znp−i r is a factorization of(βi)A such that

|alph(zj)| = ni−1 for j = 1,2, . . .np−ir and (βi+1)A = u1u2 · · ·unp−i+1r is a factorization of
(βi+1)A such that|alph(u j)|= ni for j = 1,2, . . .np−i+1r, then for eachj1 ∈ {1,2, . . . , np−ir},
there existsj2 ∈ {1,2, . . . , np−i−1r} such that alph(zj1)⊆ alph(u j2).

The property (P1) allows the attacker construct a 2|A|-collision C1 in fβ1
with any initial valueh0

so that the expected number of queries onf is ã(|β1|2
n
2 ). The property (P2) ensures that based on the

multicollision guaranteed by (P1), the attacker can proceed and, fori = 2,3, . . . , p, create a 2n
p−i r-collision

Ci in fβ1β2···βi
so that the expected number of queries onf is ã|β1β2 · · ·βi|2

n
2 . Thus finally a 2r -collision

of complexityã|α |2n
2 in Hα̂, f is generated.

Finally on the basis of the previous attack construction and(the future) Theorem 8, the following can
be proved ([5]).

Theorem 4 Let m, n and q be positive integers such that m> n and q> 1, f : {0,1}n×{0,1}m→{0,1}n

a compression function, and̂α = (α1,α2, . . .) a q-bounded sequence of words such thatalph(αl ) = Nl

for each l∈N+. Then, for each r∈N+, there exists a2r -collision attack on the generalized iterated hash
functionHα̂, f such that the expected number of queries on f is at mostãqN(n(q−1)2

r2q−3,q)2
n
2 .

Rermark 2 The inequality N(m,q)< m2q−1
(see Theorem 5) implies that

N(n(q−1)2
r2q−3

,q) < n(q−1)22q−1
r(2q−3)2q−1

.
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The results in [14] imply that, given a random oracle hash function G of length 2n, the expected

number of queries onG to find a 2r -collision is inΩ(2n2r−1
2r ).

Call a generalized iterated hash function bounded if it isq-bounded for someq∈ N+.

Corollary 1 There does not exist a bounded generalized iterated hash function that is multicollision
resistant.

3.2 Essential combinatorial results

We state a list of combinatorial results that imply Theorem 4. The main result in stated is the form of
classical combinatorial theorems. For a proof, see [5].

Theorem 5 For all positive integers m and q there exists a (minimal) positive integer N(m,q) such that
if α is a word for which|alph(α)| ≥ N(m,q) and|α |a ≤ q for each a∈ alph(α), there exist A⊆ alph(α)
with |A|= m, and p∈ {1,2, . . . ,q}, as well as wordsα1,α2, . . . ,αp such thatα = α1α2 · · ·αp and for all
i ∈ {1,2, . . . , p}, the word(αi)A is a permutation of A. Moreover, for all m,q∈N+ we have N(m,q+1)≤
N(m2−m+1,q).

Rermark 3 Let m∈N+. In the case q= 2, the previous theorem gives us the boundary value N(m,2) =
m2−m+1. Let

A = {ai, j |i = 1,2, . . . ,m−1, j = 1,2, . . . ,m}
be an alphabet of m(m−1) symbols. Let furthermore

γi = ai,1ai,2 · · ·ai,m−1ai,mai,m−1ai,m−2 · · ·ai,1

for i = 1,2, . . . ,m−1 andα = γ1γ2 · · ·γm−1. It is quite straightforward to see that there does not existan
m-letter subalphabet of A such that either (i)(α)A is a permutation of A or (ii) there exists a factorization
α = α1α2 such that(α1)A and(α2)A are both permutations of A. Thus N(m,2) =m2−m+1 for m∈N+.

Suppose now thatA andα = α1α2 · · ·αp are as in Theorem 5, i.e., for alli ∈ {1,2, . . . , p}, the word
(αi)A is a permutation ofA. To make our multicollision attack succeed, this is not yet sufficient. We need
permutationsβ1, β2, . . ., βp of an sufficiently large alphabetB such that when factoringβi = βi1βi2 · · ·βidi

into di ∈ N+ equal length factors fori = 1,2, . . . , p whered j dividesd j+1 and the following holds: for
eachi ∈ {1,2, . . . , p−1} and j1 ∈ {1,2, . . . ,di} there existsj2 ∈ {1,2, . . . ,di+1} such that alph(βi j1) ⊆
alph(βi+1, j2). Only then we can, starting from the first permutation (and the wordα1) roll on our attack
well. Above the permutationsβ1,β2, . . . ,βp are induced by the wordsα1,α2, . . . ,αp, respectively, when
α is long enough (or equivalently, the alphabet alph((α) is sufficiently large). That these permutations
always can be found, is verified in the following three combinatorial results.

We wish to further study the mutual structure of permutations in long words guaranteed by Theo-
rem 5. By increasing the length of the wordα the permutations are forced to possess certain stronger
structural properties. The motives are, besides our interest in combinatorics on words, in information
security applications. The connection of the results to creating multicollisions on generalized iterated
hash functions is more accurately, albeit informally, described in Section 5.

As the first step of our reasoning we need an application of thefamous Hall’s Matching Theorem.
For the proof, see [6] and [3].

Theorem 6 (Partition Theorem) Let k∈ N+ and A be a finite nonempty set such that k divides|A|.
Furthermore, let{Bi}k

i=1 and{Cj}k
j=1 be partitions of A such that|Bi| = |Cj | for i, j = 1,2, . . . ,k. Then

for each x∈ N+ such that|A| ≥ k3 · x, there exists a bijectionσ : {1,2, . . . ,k} → {1,2, . . . ,k} for which
|Bi ∩Cσ(i)| ≥ x for i = 1,2, . . . ,k.
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The next theorem is also from [6]. It is an inductive generalization of Partition Theorem to different
size of factorizations. For the proof, see [6].

Theorem 7 (Factorization Theorem) Let d0,d1,d2, . . . ,dr , where r∈N+, be positive integers such that
di divides di−1 for i = 1,2, . . . , r, A an alphabet of cardinality|A| = d0d2

1d2
2 · · ·d2

r , and w1,w2, . . . ,wr+1

permutations of A. Then there exists a subset B of A of cardinality |B| = d0 such that the following
conditions are satisfied.

(1) For any i∈ {1,2, . . . , r}, if πB(wi) = x1x2 · · ·xdi is the factorization ofπB(wi) and πB(wi+1) =
y1y2 · · ·ydi is the factorization ofπB(wi+1) into di equal length(= d0

di
) blocks, then for each j∈

{1,2, . . . ,di}, there exists j′ ∈ {1,2, . . . ,di} such thatalph(x j) = alph(y j ′); and

(2) If wr+1 = u1u2 · · ·udr is the factorization wr+1 into dr equal length(= d0d2
1d2

2 · · ·d2
r−1dr) blocks,

thenπB(wr+1) = πB(u1)πB(u2) · · ·πB(udr ) is the factorization ofπB(wr+1) into dr equal length
(= d0

dr
) blocks.

In fact what we need in our considerations is the following

Corollary 2 Let d0,d and r be positive integers such that d divides d0, A an alphabet of cardinality
|A| = d0d2r , and w1,w2, . . . ,wr+1 permutations of A. Then there exists a subset B of A of cardinality
|B|= d0 satisfying the following. Let p,q∈ {1,2, . . . , r +1} andπB(wp) = x1x2 · · ·xd the factorization of
πB(wp) andπB(wq) = y1y2 · · ·yd the factorization ofπB(wq) into d equal length(= d0

d ) blocks, then for
each i∈ {1,2, . . . ,d}, there exists j∈ {1,2, . . . ,d} such thatalph(xi) = alph(y j).

The last result of this section combines the main result of this section (Theorem 5) to the previous
combinatorial accomplishments. Theorem 8 is indispensable for the attack constrution in the end of
Section 3.1.

Theorem 8 Let α be a word and k≥ 2, n≥ 1, and q≥ 2 integers such that
(1) |alph(α)| ≥ N(n(q−1)2

k2q−3,q); and

(2) |α |a ≤ q for each a∈ alph(α) .
Then there exists B⊆ alph(α), p∈ {1,2, . . . ,q} and a factorizationα = α1α2 · · ·αp for which

(3) |B|= np−1k;

(4) B⊆ alph(αi) and(αi)B is a permutation of B for i= 1,2, . . . , p; and

(5) For any i∈ {1,2, . . . , p−1}, if (αi)B = z1z2 · · ·znp−ik is the factorization of of(αi)B into np−ik equal
length(= ni−1) blocks and(αi+1)B = u1u2 · · ·unp−i−1k the factorization of(αi+1)B into np−i−1 equal
length(= ni) blocks, then for each j1 ∈ {1,2, . . . ,np−ik}, there exists j2 ∈ {1,2, . . . , np−i−1k} such
that alph(zj1)⊆ alph(u j2).

4 Conclusion

We have considered combinatorics on words from a fresh viewpoint which is induced by applications in
information security. Some small steps have already been taken in the new research frame. The results
have been promising; they imply more efficient attacks on generalized iterated hash functions and, from
their part, confirm the fact that the iterative structure possesses certain generic security weaknesses.

Research Problem. Consider Theorem 5. The exact value ofN(m,q) is known only in the casesm= 1,
q= 1 andq= 2: Trivially N(1,q) = 1 andN(m,1) = m, furthermoreN(m,2) = m2−m+1 (see Remark
3). It is probable that in general the numberN(m,q+1) is significantly smaller thanN(m2−m+1,q).
Moreover, we have not evaluatedN(m,q) from below at all. Find reasonable lower and upper bounds to
N(m,q) for m> 1,q> 2.
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