Module MA1M01: Mathematical Methods
 Credit weighting (ECTS)
 10 credits
 Semester/term taught
 Michaelmas term 201718
 Contact Hours
 11 weeks, 5 lectures plus tutorials and computer labs per week
 Lecturers
 Prof. Sinéad Ryan Prof Alberto Ramos
 Learning Outcomes
 On successful completion of this module, students will be able to:
 use graphs of functions in the context of derivatives and integrals
 compute derivatives and equations of tangent lines for graphs of stadard functions including rational functions, roots, trigonometric, exponential and logs and compositions of them;
 find indefinite and definite integrals including the use of substitution and integration by parts;
 solve simple maximisation/minimisation problems using the first derivative test and other applications including problems based on population dynamics and radioactive decay;
 select the correct method from those covered in the module to solve wordy calculus problems, including problems based on population dynamics and radioactive decay;
 algebracially manipulate matrices by addition and multiplication and use Leslie matrices to determine population growth;
 solve systems of linear equations by GaussJordan elimination;
 calculate the determinant of a matrix and understand its connection to the existence of a matrix inverse; use GaussJordan elimination to determine a matrix inverse;
 determine the eigenvalues and eigenvectors of a matrix and link these quantities to population dynamics;
 state and apply the laws of probability;
 determine the results of binomial experiments with discrete random variables;
 calculate probabilities using probability density functions for continuous random variables.
 Module Content

Calculus for Life Scientists
This part will be lectured by Prof. Alberto Ramos and there will be 3 lectures plus one tutorial per week. The syllabus is largely based on [BittingerGN].
The calculus part of the syllabus is approximately Chapter 15 along with a little of Chapter 8 on differential equations (sections 8.1 and 8.2) from [BittingerGN].
 Functions and graphs. Lines, polynomials, rational functions, trigonometric functions and the unit circle.
 Differentiation. Limits, continuity, average rate of change, first principles definition, basic rules for differentiation.
 Graphical interpretation of derivatives, max/min.
 Exponential and log functions. Growth and decay applications.
 Integration (definite and indefinite). Techniques of substitution and integration by parts. Applications.
 Differential equations and initial value problems, solving first order linear equations. Some application in biology or ecology.
Discrete Mathematics for Life Scientists
Prof. Sinéad Ryan will be the lectuer for this part. There will be 2 lectures per week, one tutorial and a computer practical.
The syllabus is approximately:

Linear algebra. Matrices, solving systems of linear equations, inverse matrices, determinants, eigenvalues and eigenvectors, solving difference equations. Population growth. (Chapter 6 of [BittingerGN].)
 Probability. Basic concepts of probability. The binomial
distribution, expectation and standard deviation for discrete random
variables. Continuous random variables, probability density functions,
expectation and standard deviation of continuous random variables.
(Sections 10.1, 10.3, 10.4 of [BittingerGN].)
 Computing. Basic concept of programming formulae in a spreadsheet such as Excel (absolute and relative cell references, some typical built in functions like sum, count, if). Formula for least squares fit of a line to points in the plane (without justification?). Graphs. Use of log scales.
Textbook:
 Not Required
 Module Prerequisite
 None (except Leaving certificate minimum for entry)
 Assessment Detail
 This module will be examined in a 3 hour examination in Trinity term. The exam will count 75% of the final grade with the remaining 25% for continuous assessment. Supplementals if required will consist of 100% exam.