Download this PDF file Fullscreen Fullscreen Off
References
- Biane, P., Pitman, J., and Yor, M. (2001), Probability laws related to the Jacobi theta and Riemann zeta functions, and Brownian excursions, Bull. A.M.S. (N.S.), 38, 435 - 465.
- Cameron, R.H. and Martin, W.T. (1944), The Wiener measure of Hilbert neighborhoods in the space of real continuous functions, Jour. Math. Phys. Massachusetts Inst. Technology, 23 195 - 209. Math. Review 6,132a
- Cameron, R.H. and Martin, W.T. (1945), Transformations of Wiener integrals under a general class of linear transformations, Trans. Amer. Math. Soc., 58, 184 - 219. Math. Review 7,127c
- Dunford, N. and Schwartz, J.T. (1963), Linear operators, Part II, Interscience, New York. Math. Review 32 #6181
- Donati-Martin, C. and Yor, M. (1991), Fubini's theorem for double Wiener integrals and the variance of the Brownian path, Ann. Inst. Henri Poincaré, 27, 181-200. Math. Review 92m:60072
- Hörmander, L. (1990), The Analysis of Linear Partial Differential Operators I, 2nd ed., Springer, Berlin. Math. Review 91m:35001b
- Ikeda, N. and Manabe, S. (1993), Asymptotic formulae for stochastic oscillatory integrals, in ``Asymptotic Problems in Probability Theory: Wiener Functionals and Asymptotics'' WHERE article_id=ed. by K.D.Elworthy and N.Ikeda, Longman, 136-155. Math. Review 97j:60098
- Ikeda, N. and Watanabe, S. (1989), Stochastic Differential Equations and Diffusion Processes, 2nd ed., North-Holland/Kodansha, Amsterdam/Tokyo. Math. Review 90m:60069
- Itô, K. and Nisio, M. (1968), On the convergence of sums of independent Banach space valued random variables Osaka Jour. Math., 5, 35 - 48. Math. Review 38 #3897
- Jorgenson, J. and Lang, S. (1993), Basic analysis of regularized series and products, Lect. Notes in Math. 1564, Springer, Berlin. Math. Review 95e:11094
- Kuo, H.-H. (1975), Gaussian measures in Banach spaces, Lect. Notes in Math. 463, Springer, Berlin. Math. Review 57 #1628
- Lévy, P. (1950), Wiener's random function, and other Laplacian random functions, in ``Proc. Second Berkeley Symp. Math. Stat. Prob. II'' WHERE article_id= U.C. Press, Berkeley, 171 - 186. Math. Review 13,476b
- Lyons, T. (1995), The interpretation and solution of ordinary differential equations driven by rough signals, Proc. Symposia in Pure Math. 57, 115 - 128. Math. Review 96d:34076
- Malliavin, P. (1985), Analyticité transverse d'opérateurs hypoelliptiques C3 sur des fibrés principaux, Spectre équivariant et courbure, C. R. Acad. Sc. Paris, 301, 767-770. Math. Review 87a:35051
- Pitman, J. and Yor, M. Infinitely divisible laws associated with hyperbolic functions, preprint.
- Sato, K. (1999), Lévy Processes and Infinitely Divisible Distributions, Cambridge Univ. Press, Cambridge.
- Sugita, H. and Taniguchi, S. (1998), Oscillatory integrals with quadratic phase function on a real abstract Wiener space, J. Funct. Anal. 155, 229-262. Math. Review 99e:60126
- Taniguchi, S. (1996), On Ricci curvatures of hypersurfaces in abstract Wiener spaces, J. Funct. Anal., 136, 226-244. Math. Review 97j:60101
- Whittaker, E.T. and Watson, G.N. (1927), A Course of Modern Analysis, 4th ed., Cambridge Univ. Press, Cambridge, Math. Review 97k:01072

This work is licensed under a Creative Commons Attribution 3.0 License.