Download this PDF file Fullscreen Fullscreen Off
References
- M.T. Barlow and E.A. Perkins. On the filtration of historical Brownian motion. Ann. Probab., 22:1273-1294, 1994. Math. Review 96g:60058
- J.T. Cox and D. Griffeath. Diffusive clustering in the two dimensional voter model. Ann. Probab., 14:347-370, 1986. Math. Review 91d:60250
- J.T. Cox and A. Klenke. Recurrence and ergodicity of interacting particle systems. Probab. Theory Related Fields, 116(2):239-255, 2000. Math. Review 2001j:60181
- J.T. Cox, A. Klenke, and E.A. Perkins. Convergence to equilibrium and linear systems duality. In Luis G. Gorostiza and B. Gail Ivanoff, editors, Stochastic Models, volume 26 of CMS Conference Proceedings, pages 41-66. Amer. Math. Soc., Providence, 2000. Math. Review 2001h:60175
- D.A. Dawson, A.M. Etheridge, K. Fleischmann, L. Mytnik, E.A. Perkins, and J. Xiong. Mutually catalytic branching in the plane: Finite measure states. WIAS Berlin, Preprint No. 615, 2000, Ann. Probab., to appear 2002. Math Review article not yet available.
- D.A. Dawson and K. Fleischmann. A continuous super-Brownian motion in a super-Brownian medium. Journ. Theoret. Probab., 10(1):213-276, 1997. Math. Review 98a:60062
- D.A. Dawson and K. Fleischmann. Longtime behavior of a branching process controlled by branching catalysts. Stoch. Process. Appl., 71(2):241-257, 1997. Math. Review 99c:60187
- D.A. Dawson and K. Fleischmann. Catalytic and mutually catalytic super-Brownian motions. In Ascona 1999 Conference, volume 52 of Progress in Probability, pages 89-110, Birkhâ°user Verlag, 2002. Math Review article not yet available.
- D.A. Dawson, K. Fleischmann, L. Mytnik, E.A. Perkins, and J. Xiong. Mutually catalytic branching in the plane: Uniqueness. WIAS Berlin, Preprint No. 641, Ann. Inst. Henri Poincarà Probab. Statist. (in print), 2002. Math Review article not yet available.
- D.A. Dawson and E.A. Perkins. Long-time behavior and coexistence in a mutually catalytic branching model. Ann. Probab., 26(3):1088-1138, 1998. Math. Review 99f:60167
- J.-F. Delmas and K. Fleischmann. On the hot spots of a catalytic super-Brownian motion. Probab. Theory Relat. Fields, 121(3):389-421, 2001. Math. Review 911 867 428
- A.M. Etheridge and K. Fleischmann. Persistence of a two-dimensional super-Brownian motion in a catalytic medium. Probab. Theory Relat. Fields, 110(1):1-12, 1998. Math. Review 98k:60149
- S.N. Ethier and T.G. Kurtz. Markov Processes: Characterization and Convergence. Wiley, New York, 1986. Math. Review 88a:60130
- S.N. Evans and E.A. Perkins. Measure-valued branching diffusions with singular interactions. Canad. J. Math., 46(1):120-168, 1994. Math. Review 94J:60099
- K. Fleischmann and A. Greven. Diffusive clustering in an infinite system of hierarchically interacting diffusions. Probab. Theory Relat. Fields, 98:517-566, 1994. Math. Review 95j:60163
- K. Fleischmann and A. Greven. Time-space analysis of the cluster-formation in interacting diffusions. Electronic J. Probab., 1(6):1-46, 1996. Math. Review 97e:60151
- K. Fleischmann and A. Klenke. Smooth density field of catalytic super-Brownian motion. Ann. Appl. Probab., 9(2):298-318, 1999. Math. Review 2000k:60168
- K. Fleischmann and A. Klenke. The biodiversity of catalytic super-Brownian motion. Ann. Appl. Probab., 10(4):1121-1136, 2000. Math. Review 2002e:60079
- K. Fleischmann, A. Klenke and J. Xiong. Mass-time-space scaling of a super-Brownian catalyst reactant pair. Preprint, University Koeln, Math. Instit., in preparation. Math Review article not yet available.
- P.-A. Meyer. Probability and Potentials. Blaisdell Publishing Company, Toronto, 1966. Math. Review 34 #5119
- I. Mitoma. An $infty$-dimensional inhomogeneous Langevin equation. J. Functional Analysis, 61:342-359, 1985. Math. Review 87i:60066
- L. Mytnik. Uniqueness for a mutually catalytic branching model. Probab. Theory Related Fields, 112(2):245-253, 1998. Math. Review 99i:60125
- E.A. Perkins. Dawson-Watanabe superprocesses and measure-valued diffusions. In â¦cole d'Ãtà de probabilitÃs de Saint Flour XXIX-1999, Lecture Notes in Mathematics. Springer-Verlag, Berlin, to appear 2000. Math Review article not yet available.
- T. Shiga. Two contrasting properties of solutions for one-dimensional stochastic partial differential equations. Can. J. Math., 46:415-437, 1994. Math. Review 95h:60099
- T. Shiga and A. Shimizu. Infinite-dimensional stochastic differential equations and their applications. J. Mat. Kyoto Univ., 20:395-416, 1980. Math. Review82i:60110
- J.B. Walsh. An introduction to stochastic partial differential equations. volume 1180 of Lecture Notes Math., pages 266-439. â¦cole d'Ãtà de probabilitÃs de Saint-Flour XIV - 1984, Springer-Verlag Berlin, 1986. Math. Review 88a:60114

This work is licensed under a Creative Commons Attribution 3.0 License.