Download this PDF file Fullscreen Fullscreen Off
References
- Doob, J.L. (1942), The Brownian movement and stochastic equations, Ann. of Math. (2) 43, 351-369. Math. Review 4,17d
- Embrechts, P. and Maejima, M. (2002), Selfsimilar Processes, Princeton Series in Applied Mathematics, Princeton University Press. Math. Review 1 920 153
- Karatzas, I. and Shreve, S.E. (1991), Brownian Motion and Stochastic Calculus, Graduate Texts in Mathematics, Springer-Verlag, New York. Math. Review 92h:60127
- Lamperti, J.W. (1962), Semi-stable stochastic processes, Trans. Amer. Math. Soc. 104, 62-78. Math. Review 25 #1575
- Langevin, P. (1908), Sur la théorie du mouvement brownien, C.R. Acad. Sci. Paris 146, 530-533.
- Pipiras, V. and Taqqu, M. (2000), Integration questions related to fractional Brownian motion, Prob. Th. Rel. Fields 118, 121-291. Math. Review 2002c:60091
- Protter, P. (1990), Stochastic Integration and Differential Equations, Springer-Verlag, Berlin. Math. Review 91i:60148
- Samorodnitsky, G. and Taqqu, M.S. (1994), Stable Non-Gaussian Random Processes, Chapman & Hall, New York. Math. Review 95f:60024
- Uhlenbeck, G.E. and Ornstein, L.S. (1930), On the theory of the Brownian motion, Physical Review 36, 823-841.
- Wheeden, R.L. and Zygmund, A. (1977), Measure and Integral, Marcel Dekker, New York-Basel. Math. Review 58 #11295

This work is licensed under a Creative Commons Attribution 3.0 License.