Download this PDF file Fullscreen Fullscreen Off
References
- N. Alon. Eigenvalues and expanders. Combinatorica 6:2 (1986), 83--96. Math. Review 88e:05077
- S. Bobkov, C. Houdré and P. Tetali. &lambda&infin, vertex isoperimetry and concentration. Combinatorica 20:2 (2000), 153--172. Math. Review 2001h:05066
- J. Cheeger. A lower bound for the smallest eigenvalue of the Laplacian. In Problems in analysis (Papers dedicated to Salomon Bochner) (1969), 195--199, Princeton Univ. Press, Princeton, NJ, USA. Math. Review 0402831
- P. Diaconis and D. Stroock. Geometric bounds for eigenvalues of Markov chains. Ann. Appl. Probab 1:1 (1991), 36--61. Math. Review 92h:60103
- R. A. Horn and C. R. Johnson. Matrix analysis. (1985) Cambridge Univ. Press, Cambridge. Math. Review 87e:15001
- M. Jerrum and A. Sinclair. Conductance and the rapid mixing property for Markov chains: the approximation of the permanent resolved. Proceedings of the 20th ACM Symposium on theory of computing, 1988. (1998) 235--243. Math. Review number not available.
- G. F. Lawler and A. D. Sokal. Bounds on the L2 spectrum for Markov chains and Markov processes: a generalization of Cheeger's inequality. Trans. Amer. Math. Soc. 309:2 (1988), 557--580. Math. Review 89h:60105
- B. Morris and Y. Peres. Evolving sets, mixing and heat kernel bounds. Probab. Theory Related Fields 133:2 (2005), 245--266. Math. Review 2007a:60042
- R. Montenegro and P. Tetali. Mathematical Aspects of Mixing Times in Markov Chains. Foundations and Trends in Theoretical Computer Science 1:3 (2006), NOW Publishers, Boston-Delft.
- T. Stoyanov. Isoperimetric and Related Constants for Graphs and Markov Chains. (2001), Ph.D. Thesis, Department of Mathematics, Georgia Institute of Technology.

This work is licensed under a Creative Commons Attribution 3.0 License.