Download this PDF file Fullscreen Fullscreen Off
References
M. Abramowitz, I.A. Stegun (Eds.): Handbook of mathematical functions, Dover, New-York, 1965. Math. Review link 94b:00012
P. Biane, M. Yor: Quelques précisions sur le méandre Brownien, Bull. Sci. Math. 111, 101-109 (1988) Math. Review link 89i:60156
D.A. Dawson: Measure-valued Markov processes, Ecole d'été de St-Flour 1991, Lecture Notes in Math. 1541, Springer, Berlin, 1993. Math. Review link 94m:60101
D.A. Dawson, I. Iscoe, E.A. Perkins: Super-Brownian motion: Path properties and hitting probabilities, Probab. Theor. Rel. Fields 83, 135-205 (1989) Math. Review link 90k:60073
D.A. Dawson, E.A. Perkins: Historical superprocesses, Memoirs Amer. Math. Soc. 454, 1991. Math. Review link 92a:60145
A. Dembo, O. Zeitouni: Large deviations for random distribution of mass, Proceedings of the IMA workshop on random discrete structures (Ed. D.J. Aldous, R. Pemantle), IMA vol. 76, Springer, 45-53 (1994) Math. Review link 97d:60051
J.-S. Dhersin: Super-mouvement brownien, serpent brownien et équations aux dérivées partielles, Thèse de doctorat de l'université Paris 6, 1997.
J.-S. Dhersin, J.-F. Le Gall: Wiener's test for super-Brownian motion and the Brownian snake, Probab. Theor. Rel. Fields, to appear.
E.B. Dynkin: A probabilistic approach to one class of nonlinear differential equations, Probab. Theor. Rel. Fields 89, 89-115 (1991) Math. Review link 92d:35090
E.B. Dynkin: An introduction to branching measure-valued processes, CRM Monograph Series Vol.6, Amer. Math. Soc., Providence, 1994. Math. Review link 96f:60145
E.B. Dynkin, S.E. Kuznetsov: Markov snakes and superprocesses, Probab. Theor. Rel. Fields 103, 433-473 (1995) Math. Review link 96k:60188
J.-P. Imhof: Density factorizations for Brownian motion and the three-dimensional Bessel processes and applications, J. Appl. Prob. 21, 500-510 (1984) Math. Review link 85j:60152
J.-F. Le Gall: A class of path-valued Markov processes and its applications to superprocesses, Probab. Th. Rel. Fields 95, 25-46 (1993) Math. Review link 94f:60093
J.-F. Le Gall: A path-valued Markov process and its connections with partial differential equations, Proceedings 1st European Congress of Mathematics, Vol. II, pp. 185-212, Birkhäuser, Boston, 1994. Math. Review link 96m:60169
J.-F. Le Gall: The Brownian snake and solutions of $Delta u = u^2$ in a domain, Probab. Th. Rel. Fields 104, 393-432 Math. Review link 96c:60098
J.-F. Le Gall: A probabilistic Poisson representation for positive solutions of $Delta u = u^2$ in a domain, Comm. Pure Appl. Math. 50, 69-103 (1997)
J.-F. Le Gall: Superprocesses, Brownian snakes and partial differential equations, Lecture Notes from the 11th winter school on Stochastic processes, Sigmundsburg, March 1996, Prépublication 337 du Laboratoire de Probabilités, Université Paris VI (1996).
J.-F. Le Gall, E.A. Perkins: The Hausdorff measure of the support of two-dimensional super-Brownian motion, Ann. Probab. 23, 1719-1747 (1995) Math. Review link 96m:60114
S.C. Port, C.J. Stone: Brownian motion and classical potential theory, Academic Press, New-York, 1978. Math. Review link 58#11459
D. Revuz, M. Yor: Continuous martingales and Brownian motion, Springer, Berlin, 1991. Math. Review link 92d:60053
L. Serlet: Some dimension results for super-Brownian motion, Probab. Theor. Rel. Fields 101, 371-391 (1995) Math. Review link 96m:60115
L. Serlet: On the Hausdorff measure of multiple points and collision points of super-Brownian motion, Stochastics Stoch. Rep. 54, 169-198 (1995)
L. Serlet: The occupation measure of super-Brownian motion conditioned on non-extinction, J. Theor. Prob. 9, 561-578 (1996)
L. Serlet: Large deviation principle for the Brownian snake, Stoch. Proc. Appl., to appear.
J. Verzani: Cone paths for the planar Brownian snake, Probab. Theor. Rel. Fields, to appear
M. Yor: Some aspects of Brownian motion, Part I: Some special functionals, Lectures in Mathematics, ETH Zürich, Birkhäuser, 1992 Math. Review link 93i:60155
M. Yor: Generalized meanders as limits of weighted Bessel processes, and an elementary proof of Spitzer's asymptotic result on Brownian windings, Stud. Sci. Math. Hung., to appear.

This work is licensed under a Creative Commons Attribution 3.0 License.