The Law of the Iterated Logarithm for a Triangular Array of Empirical Processes
Abstract
We study the compact law of the iterated logarithm for a certain type of triangular arrays of empirical processes, appearing in statistics (M-estimators, regression, density estimation, etc). We give necessary and sufficient conditions for the law of the iterated logarithm of these processes of the type of conditions used in Ledoux and Talagrand (1991): convergence in probability, tail conditions and total boundedness of the parameter space with respect to certain pseudometric. As an application, we consider the law of the iterated logarithm for a class of density estimators. We obtain the order of the optimal window for the law of the iterated logarithm of density estimators. We also consider the compact law of the iterated logarithm for kernel density estimators when they have large deviations similar to those of a Poisson process.
Full Text: Download PDF | View PDF online (requires PDF plugin)
Pages: 1-39
Publication Date: August 18, 1997
DOI: 10.1214/EJP.v2-19
References
- Alexander, K. S. (1987), Central limit theorems for stochastic processes under random entropy conditions. Probab. Theor. Rel. Fields 75, 351-378. Math. Review 88h:60069
- Arcones, M. A. (1994), Some strong limit theorems for M-estimators. Stoch. Proc. Appl. 53, 241-268 . Math. Review 96c:60040
- Arcones, M. A. (1995), Weak convergence for the row sums of a triangular array of empirical processes indexed by a manageable triangular array of functions. (preprint) Math. Review number not available.
- Arcones, M. A. (1995), Weak convergence for the row sums of a triangular array of empirical processes under bracketing conditions. (preprint) Math. Review number not available.
- Arcones, M. A. (1996), The Bahadur-Kiefer representation of U-quantiles. Annals of Statistics, 24, 1400-1422. Math. Review number not available.
- Arcones, M. A. (1996), The Bahadur-Kiefer representation of Lp regression estimators. Econometric Theory 12 257-283. Math. Review 97d:62119
- Arcones, M. A. and
Giné, E. (1995),
On the law of the iterated logarithm for canonical
U-statistics and
processes.
Stoch. Proc. Applic. 58, 217-245.
Math. Review 96i:60031
- Aronszajn, N. (1950), Theory of reproducing kernels. Trans. Amer. Mathem. Soc. 68, 337-404. Math. Review 14,479c
- Bingham, N. H., Goldie, C. M. and Teugels, J. L. (1987), Regular Variation. Cambridge University Press, Cambridge, United Kingdom. Math. Review 88i:26004
- Deheuvels, P. and Mason, D. M. (1990), Nonstandard functional laws of the iterated logarithm for tail empirical and quantile processes.
Ann. Probab. 18, 1693-1722. Math. Review 91j:60056 - Deheuvels, P. and Mason, D. M. (1991), A tail empirical process approach to some nonstandard laws of the iterated logarithm. J. Theor. Probab. 4, 53-85. Math. Review 92e:60061
- Deheuvels, P. and Mason, D. M. (1994), Functional laws of the iterated logarithm for local empirical processes indexed by sets. Ann. Probab. 22, 1619-1661. Math. Review 96e:60048
- Deheuvels, P. and Mason, D. M. (1995), Nonstandard local empirical processes indexed by sets. J. Statist. Plann. Inference 45, 91-112. Math. Review 97c:60011
- Dembo, A. and Zeitouni, O. (1993), Large Deviations Techniques and Applications. Jones and Barlett Publishers, Boston. Math. Review 95a:60034
- Dudley, R. M. (1984), A course on empirical processes. Lect. Notes in Math. 1097, 1-142. Springer, New York. Math. Review 88e:60029
- Ellis, R. S. (1984), Large deviations for a general class of random vectors. Ann. Probab. 12, 1-12. Math. Review 85e:60032
- Finkelstein, H. (1971), The law of the iterated logarithm for empirical distributions, Ann. Math. Statist. 42, 607-615. Math. Review 44 #4803
- Giné, E. and Zinn, J. (1986), Lectures on the central limit theorem for empirical processes, Lect. Notes in Math. 1221, 50-112. Springer-Verlag, New York. Math. Review 88i:60063
- Hall, P. (1981), Laws of the iterated logarithm for nonparametric density estimators. Z. Wahrsch. verw. Gebiete 56, 47-61. Math. Review 82e:60049
- Hall, P. (1991), On iterated logarithm laws for linear arrays and nonparametric regression estimators. Ann. Probab. 19, 740-757. Math. Review 92g:62038
- Härdle, W. (1984),
A law of the iterated logarithm for
nonparametric regression function estimators. Ann. Probab.
12, 624-635.
Math. Review 85i:62033
- Kiefer, J. (1972), Iterated logarithm analogues for sample quantiles when pn -> 0. Proc. Sixth Berkeley Symp. Math. Stat. and Prob. I, 227-244. Univ. of California Press, Berkeley. Math. Review 53 #6696
- Ledoux, M. and Talagrand, M. (1988), Characterization of the law of the iterated logarithm in Banach spaces. Ann. Probab. 16, 1242-1264. Math. Review 89i:60016
- Ledoux, M. and Talagrand, M. (1991), Probability in Banach Spaces. Springer, New York Math. Review 93c:60001
- Parzen, E. (1962), On the estimation of a probability density function and mode. Ann. Mathem. Statist. 33, 1065-1076. Math. Review 26: #841
- Prakasa Rao, B. L. S. (1983), Nonparametric Functional Estimation. Academic Press, New York. Math. Review 86m:62076
- Stout, W. (1974), Almost Sure Convergence. Academic Press, New York. Math. Review 56 #13334

This work is licensed under a Creative Commons Attribution 3.0 License.