Download this PDF file Fullscreen Fullscreen Off
References
- Alexander, K. S. (1987), Central limit theorems for stochastic processes under random entropy conditions. Probab. Theor. Rel. Fields 75, 351-378. Math. Review 88h:60069
- Arcones, M. A. (1994), Some strong limit theorems for M-estimators. Stoch. Proc. Appl. 53, 241-268 . Math. Review 96c:60040
- Arcones, M. A. (1995), Weak convergence for the row sums of a triangular array of empirical processes indexed by a manageable triangular array of functions. (preprint) Math. Review number not available.
- Arcones, M. A. (1995), Weak convergence for the row sums of a triangular array of empirical processes under bracketing conditions. (preprint) Math. Review number not available.
- Arcones, M. A. (1996), The Bahadur-Kiefer representation of U-quantiles. Annals of Statistics, 24, 1400-1422. Math. Review number not available.
- Arcones, M. A. (1996), The Bahadur-Kiefer representation of Lp regression estimators. Econometric Theory 12 257-283. Math. Review 97d:62119
- Arcones, M. A. and
Giné, E. (1995),
On the law of the iterated logarithm for canonical
U-statistics and
processes.
Stoch. Proc. Applic. 58, 217-245.
Math. Review 96i:60031
- Aronszajn, N. (1950), Theory of reproducing kernels. Trans. Amer. Mathem. Soc. 68, 337-404. Math. Review 14,479c
- Bingham, N. H., Goldie, C. M. and Teugels, J. L. (1987), Regular Variation. Cambridge University Press, Cambridge, United Kingdom. Math. Review 88i:26004
- Deheuvels, P. and Mason, D. M. (1990), Nonstandard functional laws of the iterated logarithm for tail empirical and quantile processes.
Ann. Probab. 18, 1693-1722. Math. Review 91j:60056 - Deheuvels, P. and Mason, D. M. (1991), A tail empirical process approach to some nonstandard laws of the iterated logarithm. J. Theor. Probab. 4, 53-85. Math. Review 92e:60061
- Deheuvels, P. and Mason, D. M. (1994), Functional laws of the iterated logarithm for local empirical processes indexed by sets. Ann. Probab. 22, 1619-1661. Math. Review 96e:60048
- Deheuvels, P. and Mason, D. M. (1995), Nonstandard local empirical processes indexed by sets. J. Statist. Plann. Inference 45, 91-112. Math. Review 97c:60011
- Dembo, A. and Zeitouni, O. (1993), Large Deviations Techniques and Applications. Jones and Barlett Publishers, Boston. Math. Review 95a:60034
- Dudley, R. M. (1984), A course on empirical processes. Lect. Notes in Math. 1097, 1-142. Springer, New York. Math. Review 88e:60029
- Ellis, R. S. (1984), Large deviations for a general class of random vectors. Ann. Probab. 12, 1-12. Math. Review 85e:60032
- Finkelstein, H. (1971), The law of the iterated logarithm for empirical distributions, Ann. Math. Statist. 42, 607-615. Math. Review 44 #4803
- Giné, E. and Zinn, J. (1986), Lectures on the central limit theorem for empirical processes, Lect. Notes in Math. 1221, 50-112. Springer-Verlag, New York. Math. Review 88i:60063
- Hall, P. (1981), Laws of the iterated logarithm for nonparametric density estimators. Z. Wahrsch. verw. Gebiete 56, 47-61. Math. Review 82e:60049
- Hall, P. (1991), On iterated logarithm laws for linear arrays and nonparametric regression estimators. Ann. Probab. 19, 740-757. Math. Review 92g:62038
- Härdle, W. (1984),
A law of the iterated logarithm for
nonparametric regression function estimators. Ann. Probab.
12, 624-635.
Math. Review 85i:62033
- Kiefer, J. (1972), Iterated logarithm analogues for sample quantiles when pn -> 0. Proc. Sixth Berkeley Symp. Math. Stat. and Prob. I, 227-244. Univ. of California Press, Berkeley. Math. Review 53 #6696
- Ledoux, M. and Talagrand, M. (1988), Characterization of the law of the iterated logarithm in Banach spaces. Ann. Probab. 16, 1242-1264. Math. Review 89i:60016
- Ledoux, M. and Talagrand, M. (1991), Probability in Banach Spaces. Springer, New York Math. Review 93c:60001
- Parzen, E. (1962), On the estimation of a probability density function and mode. Ann. Mathem. Statist. 33, 1065-1076. Math. Review 26: #841
- Prakasa Rao, B. L. S. (1983), Nonparametric Functional Estimation. Academic Press, New York. Math. Review 86m:62076
- Stout, W. (1974), Almost Sure Convergence. Academic Press, New York. Math. Review 56 #13334

This work is licensed under a Creative Commons Attribution 3.0 License.