Download this PDF file Fullscreen Fullscreen Off
References
- K. B. Athreya and P. E. Ney, Branching processes, Springer 1972. Math. Review link
- J. Bertoin and J.F. Le Gall, The Bolthausen-Sznitman coalescent and the genealogy of continuous-state branching processes. Probab. Theory and Related Fields 117 (2000), 249--266. Math. Review link
- D. A. Dawson, Measure-valued Markov Processes, in: Ecole d'Été de Probabilit'es de Saint-Flour 1991,Lecture Notes in Mathematics 1541, pp. 1-260, Springer 1993 Math. Review link
- D. A. Dawson, L. G. Gorostiza and A.Wakolbinger, Occupation time fluctuations in branching systems. J. Theor. Probab. 14 (2001), 729-796. Math. Review link
- D. A. Dawson, L. G. Gorostiza and A. Wakolbinger, Degrees of transience and recurrence and hierarchichal random walks. Preprint, 2003 (ArXiv math.PR/0401422, to appear in Potential Analysis).
- D.A. Dawson, L.G. Gorostiza and A. Wakolbinger, Hierarchical random walks, in ``Asymptotic Methods in Stochastics'' WHERE article_id=Fields Institute Communications and Monograph Series, Amer. Math. Soc. (to appear).
- D. A. Dawson and A. Greven, Multiple time scale analysis of interacting diffusions. Probab. Theory Related Fields 95 (1993), 467-508. Math. Review link
- D. A. Dawson and A. Greven, Multiple space--time scale analysis for interacting branching models. Electronic J. Probab. 1 (1996), paper no 14. Math. Review link
- D. A. Dawson and K. J. Hochberg, A multilevel branching model. Adv. Appl. Prob. 23 (1991), 701-715. Math. Review link
- D.Dawson, Y. Li and C. Mueller, The support of measure-valued branching processes in a random environment, Ann. Probab. 23 (1995), 1692-1718. Math. Review link
- D. A. Dawson and E. Perkins, Historical Processes. Memoirs of the AMS 454 (1991). Math. Review link
- D.A. Dawson and X. Zheng, Law of large numbers and central limit theorem for unbounded jump mean-field models, Adv. in Applied Math. 12 (1991), 293-326. Math. Review link
- R. Durrett, The genealogy of critical branching processes, Stochastic Process. Appl. 8 (1978), 101-116. Math. Review link
- S. N. Ethier and T. G. Kurtz, Markov Processes: Characterization and Convergence. Wiley, New York 1986 Math. Review link
- K. Fleischmann and R. Siegmund-Schultze, The structure of reduced critical Galton-Watson processes, Math. Nachr. 79 (1977) , 233-241. Math. Review link
- J. Geiger, Elementary new proofs of classical limit theorems for Galton-Watson processes, J. Appl. Prob. 36 (1999), 301-309. Math. Review link
- A. Greven, A phase transition for the coupled branching process, I. The ergodic theory in the range of finite second moments. Probab. Theory Related Fields, 87 (1991), 417-458. Math. Review link
- A. Greven and K.J. Hochberg, New Behavioral Patterns for Two-Level Branching Systems. In: Stochastic Models, (L. G. Gorostiza and G. Ivanov, eds.), pp. 205-215, CMS Conference Proceedings and Lecture Notes, Vol. 26, AMS 2000. Math. Review link
- L. Gorostiza, K. J. Hochberg and A. Wakolbinger, Persistence of a critical super-2 process. J. Appl. Probab. 32 (1995), 534-540. Math. Review link
- L. Gorostiza and A. Wakolbinger, Persistence criteria for a class of critical branching particle systems in continuous time. Ann. Probab. 19 (1995), 266-288. Math. Review link
- N. Ikeda and S. Watanabe, Stochastic differential equations and diffusion processes, North Holland 1989. Math. Review link
- O. Kallenberg, Random Measures. 4th ed., Akademie-Verlag, Berlin and Academic Press, London, 1986. Math. Review link
- O. Kallenberg, Foundations of Modern Probability, 2nd ed., Springer, 2002. Math. Review link
- N. Konno and T. Shiga, Stochastic partial differential equations for some measure-valued diffusions. Probab. Th. Rel. Fields 79 (1988), 34-51. Math. Review link
- Z. Li and T. Shiga, Measure-valued branching diffusions: immigrations, excursions and limit theorems. J. Math. Kyoto Univ. 35 (1995), 233-274. Math. Review link
- A. Liemant, K. Matthes and A. Wakolbinger, Equilibrium Distributions of Branching Processes, Akademie Verlag, Berlin, and Kluwer Academic Publishers, Dordrecht, 1988. Math. Review link
- K. Matthes, J. Kerstan and J. Mecke, Infinitely divisible point processes, Wiley, 1978. Math. Review link
- K. I. Sato and T. Watanabe. Moments of last exit times for L'evy processes, Ann. Inst. H. Poincaré, Probab. et Stat., to appear.
- S. Sawyer and J. Felsenstein, Isolation by distance in a hierarchically clustered population, J. Appl. Prob. 20 (1983), 1-10. Math. Review link
- EA. Stoeckl and A. Wakolbinger, On clan-recurrence and -transience in time stationary branching Brownian particle systems. In: Dawson, D.A. (ed.), Measure-Valued Processes, Stochastic Partial Differential Equations, and Interacting Systems, pp. 213 - 219, CMS Conference Proceedings and Lecture Notes, Vol. 5, AMS 1994. Math. Review link
- Y. Wu, A multilevel birth-death particle system and its continuous diffusion, Adv. Appl. Prob. 25(1993), 549-569. Math. Review link

This work is licensed under a Creative Commons Attribution 3.0 License.