Download this PDF file Fullscreen Fullscreen Off
References
- J.-M. Aubry, S. Jaffard. Random wavelet series. Comm. Math. Phys. 227 (2002), no. 3, 483--514. Math. Review 2003g:42054
- F. Baccelli and B. Thomas. Window Flow Control in FIFO Networks with Cross Traffic. Inria Tech. Rep. RR-3434 (1998). Math. Review number not available.
- F. Baccelli and D. Hong. TCP is Max-Plus Linear and what it tells us on its throughput. Inria Tech. Rep. RR-3986 (2000). Math. Review number not available.
- F. Baccelli and D. Hong. AIMD, Fairness and Fractal Scaling of TCP Traffic. INFOCOM (June 2002). Math. Review number not available.
- F. Baccelli and D. Hong. Interaction of TCP Flows as Billiards. Inria Tech. Rep. RR-4437 (2002). Math. Review number not available.
- J. Barral and J. L'evy V'ehel. Large deviation spectrum of a class of additive processes with correlated non-stationary increments. In preparation, (2003). Math. Review number not available.
- J. Barral and J. L'evy V'ehel. Multifractality of TCP explained. Inria Tech. Rep (2004). Math. Review number not available.
- J. Barral and B.B. Mandelbrot. Multifractal products of cylindrical pulses. Probab. Theory Related Fields 124 (2002), no. 3, 409--430. Math. Review 2004g:28005
- J. Bertoin. LÃvy processes. Cambridge Tracts in Mathematics 121. Cambridge University Press, Cambridge, 1996. x+265 pp. ISBN: 0-521-56243-0 Math. Review 98e:60117
- A. Chaintreau, F. Baccelli and C. Diot. Impact of Network Delay Variation on Multicast Session Performance With TCP-like Congestion Control. Inria Tech. Rep. RR-3987 (2000). Math. Review number not available.
- M. Crovella and A.Bestavros. Self-similarity in World Wide Web traffic: Evidence and possible causes. IEEE/ACM Trans. on Networking 5, no. 6 (1997) 835-846. Math. Review number not available.
- R.M. Blumenthal and R.K. Getoor. Sample functions of stochastic processes with stationary independent increments. J. Math. Mech. 10 (1961), 493--516. Math. Review 23 #A689
- T. D. Dang, S. Molnar and I. Maricza. Queuing Performance Estimation for General Multifractal Traffic. International Journal of Communication Systems 16 (2), (2003) 117-1363.
- R. Gaigalas and I. Kaj. Convergence of scaled renewal processes and a packet arrival model. Bernoulli 9 (2003), 671--703. Math. Review 2004d:60226
- C. Houdr'e and J. L'evy V'ehel.Large deviation multifractal spectra of certain stochastic processes. Preprint (2003). Math. Review number not available.
- P. Jacquet. Long term dependences and heavy tails in traffic and queues generated by memoryless ON/OFF sources in series. Inria Tech. Rep. RR-3516 (1998). Math. Review number not available.
- S. Jaffard. Old friends revisited: the multifractal nature of some classical functions. J. Fourier Anal. Appl. 3 (1997), 1--22. Math. Review 98b:28013
- S. Jaffard. The multifractal nature of LÃvy processes. Probab. Theory Related Fields 114 (1999), 207--227. Math. Review 2000g:60079
- S. Jaffard. On lacunary wavelet series. Ann. Appl. Probab. 10(2000), 313--329. Math. Review 2001f:60040
- J.-P.Kahane. Produits de poids alÃatoires indÃpendants et applications. (French) [Products of independent random weights, and applications.] Fractal geometry and analysis (Montreal, PQ, 1989), 277--324, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 346, Kluwer Acad. Publ., Dordrecht, 1991. Math. Review MR1140725
- M. Ledoux and M. Talagrand. Probability in Banach spaces. Isoperimetry and processes. Ergebnisse der Mathematik undihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 23. Springer-Verlag, Berlin, 1991. xii+480 pp. ISBN: 3-540-52013-9 Math. Review 93c:60001
- W. E. Leland, M. S. Taqqu, W. Willinger and D. V. Wilson. On the self-similar nature of Ethernet traffic (Extended Version). IEEE/ACM Trans. on Networking 2 (1994) pp. 1-15. Math. Review number not available.
- J. L'evy~V'ehel and R. Riedi. Fractional Brownian motion and data traffic modeling: The other end of the spectrum. Fractals in Engineering J. L'evy V'ehel, E. Lutton and C. Tricot, Eds., Springer Verlag, 1997. Math. Review number not available.
- J. L'evy~V'ehel and B. Sikdar. A Multiplicative Multifractal Model for TCP Traffic. Proceedings of IEEE ISCC (2001), 714-719. Math. Review number not available.
- B.B. Mandelbrot. Intermittent turbulence in self-similar cascades: divergence of hight moments and dimension of the carrier. J. fluid. Mech. 62 (1974), 331--358. Math. Review number not available.
- B.B. Mandelbrot. A class of multinomial multifractal measures with negative (latent) values for the ``dimension'' $f(alpha)$. Fractals' Physical Origins and Properties. Proceedings of the Erice Meeting, 1988. L. Pietronero, Ed., Plenum Press, New York, 1989, pp 3--29. Math. Review number not available.
- V. Paxson and S. Floyd. Wide area traffic: The failure of Poisson modeling. IEEE/ACM Trans. on Networking 3 (1995), 226-244. Math. Review number not available.
- V. Pipiras, M.S. Taqqu and J.B. Levy. Slow, fast and arbitrary growth conditions for renewal reward processes when the renewals and the rewards are heavy tailed. Boston University Preprint (2002).
- R. H. Riedi and J. L'evy-V'ehel. TCP Traffic is multifractal: A numerical study. Inria Tech. Rep. RR-3129 (2000). Math. Review number not available.
- L. A.Shepp, L. A. Covering the line with random intervals. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 23 (1972), 163--170. Math. Review 48 #1284
- W. R. Stevens. TCP/IP illustrated volume 1. Addison Wesley, 1994. Math. Review number not available.
- W.F. Stout. Almost sure convergence. Probability and Mathematical Statistics, Vol. 24. Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1974. x+381 pp. Math. Review 56 #13334

This work is licensed under a Creative Commons Attribution 3.0 License.