Download this PDF file Fullscreen Fullscreen Off
References
- P. Diaconis and L. Saloff-Coste. Comparison theorems for reversible Markov chains. Ann. Appl. Probab. 3 (1993), no. 3, 696-730. Math. Review 97k:60176
- R. Dobrushin, R. Koteck? and S. Shlosman. Wulff Construction. A Global Shape from Local Interaction. Translation of Mathematical Monographs, 104 (1992). AMS. Math. Review 93k:82002
- G. F. Lawler and A. D. Sokal. Bounds on the $L^2$ Spectrum for Markov Chains and Markov Processes: a Generalization of Cheeger's Inequality. Trans. Amer. Math. Soc. 309 (1988), no. 2, 557-580. Math. Review 89h:60105
- T. M. Liggett. Interacting Particles Systems. Grundlehren der Mathematischen Wissenschaften 276 (1985). Springer-Verlag, New York-Berlin. Math. Review 86e:60089
- S. T. Lu and H.-T. Yau. Spectral gap and logarithmic Sobolev inequality for Kawasaki and Glauber dynamics. Comm. Math. Phys. 156 (1993), 399-433. Math. Review 95f:60122
- F. Martinelli. On the two dimensional dynamical Ising model in the phase coexistence region. J. Statist. Phys. 76 (1994), no. 5-6, 1179-1246. Math. Review 95j:82035
- F. Martinelli. Lectures on Glauber dynamics for discrete spin models in Lectures on probability theory and statistics (Saint-Flour, 1997). Lecture Notes in Math. 1717 (1999) 93-191. Sringer-Verlag. Math. Review 2002a:60163
- F. Martinelli and E. Olivieri. Approach to equilibrium of Glauber dynamics in the one phase region I: the attractive case. Comm. Math. Phys. 161 (1994), no. 3, 447-486. Math. Review 96c:82040
- F. Martinelli and E. Olivieri. Approach to equilibrium of glauber dynamics in the one phase region II: the general case. Comm. Math. Phys. 161 (1994), no. 3, 487-514 . Math. Review 96c:82041
- G. Posta. Spectral Gap for an Unrestricted Kawasaki Type Dynamics, ESAIM Probability & Statistics 1 (1997), 145-181. Math. Review 98m:60157
- A. D. Sokal and L. E. Thomas. Absence of mass gap for a class of stochastic contour models. J. Statist. Phys. 51 (1988), no. 5-6, 907-947. Math. Review 90b:60097
- D. W. Stroock and B. Zegarlinski. The logarithmic Sobolev inequality for discrete spin on a lattice. Comm. Math. Phys. 149 (1992), no. 1, 175-193. Math. Review 93j:82013

This work is licensed under a Creative Commons Attribution 3.0 License.