Download this PDF file Fullscreen Fullscreen Off
References
- S. Albeverio and Z. M. Ma. Perturbation of Dirichlet forms--lower semiboundedness, closability and form cores. J. Funct. Anal. 99 (1991), 332--356. Math. Review 92i:47039
- Ph. Blanchard and Z. M. Ma. Semigroup of Schr"odinger operators with potentials given by Radon measures. In Stochastic processes, physics and geometry. 160--194, World Sci. Publishing, Teaneck, NJ, 1990. Math. Review 93a:35034
- R. M. Blumenthal and R. K. Getoor. Some theorems on stable processes. Trans. Amer. Math. Soc. 95 (1960), 263--273. Math. Review 0119247
- Z.-Q. Chen and T. Kumagai. Heat kernel estimates for stable-like processes on $d$-sets. Stochastic Process. Appl. 108 (2003), 27--62. Math. Review 2005d:60135
- Z.-Q. Chen and R. Song. Intrinsic ultracontractivity and conditional gauge for symmetric stable processes. J. Funct. Anal. 150 (1997), 204--239. Math. Review 98j:60103
- Z.-Q. Chen and R. Song. Conditional gauge theorem for non-local Feynman-Kac transforms. Probab. Th. rel. Fields 125 (2003), 45--72. Math. Review 2003m:60213
- Z.-Q. Chen and T. Zhang. Girsanov and Feynman-Kac type transformations for symmetric Markov processes. Ann. Inst. H. Poincar'e Probab. Statist. 38 (2002), 475--505. Math. Review 2004e:60128
- M. Fukushima. On a decomposition of additive functionals in the strict sense for a symmetric Markov process. In Dirichlet forms and stochastic processes, 155--169, de Gruyter, Berlin, 1995. Math. Review 97k:60210
- M. Fukushima, Y. Oshima and M. Takeda. Dirichlet forms and symmetric Markov processes, Walter De Gruyter, Berlin, 1994. Math. Review 96f:60126
- M. Sharpe. General Theory of Markov Processes, Academic Press, Boston, 1988. Math. Review 89m:60169
- B. Simon. Schr"odinger semigroups. Bull. Amer. Math. Soc. (N.S.) , 7 (1982), 447--526. Math. Review 86b:81001a
- R. Song. Feynman-Kac semigroup with discontinuous additive functionals. J. Theoret. Probab. 8 (1995), 727--762. Math. Review 97a:60106
- Qi S. Zhang. A Harnack inequality for the equation $nabla(anabla u)+bnabla u=0$, when $vert bvert in Ksb {n+1}$. Manuscripta Math. 89 (1996), 61--77. Math. Review 97a:35045
- Qi S. Zhang. Gaussian bounds for the fundamental solutions of $nabla (Anabla u)+Bnabla u-usb t=0$. Manuscripta Math. 93 (1997), 381--390. Math. Review 98c:35067

This work is licensed under a Creative Commons Attribution 3.0 License.