Download this PDF file Fullscreen Fullscreen Off
References
- J.-B. Baillon, Ph. Clément, A. Greven, and F. den Hollander. On the attracting orbit of a non-linear transformation arising from renormalization of hierarchically interacting diffusions. I. The compact case. Canad. J. Math. 47(1) (1995) 3-27. Math. Review 95m:60158
- J.-B. Baillon, Ph. Clément, A. Greven, and F. den Hollander. On the attracting orbit of a non-linear transformation arising from renormalization of hierarchically interacting diffusions. II. The non-compact case. J. Funct. Anal. 146 (1997) 236-298. Math. Review 98g:60177
- J.T. Cox, D.A. Dawson, and A. Greven. Mutually catalytic super branching random walks: Large finite systems and renormalization analysis. Mem. Am. Math. Soc. 809 (2004). Math. Review 2005k:60298
- D.A. Darling and P. Erdös. On the recurrence of a certain chain. Proc. Am. Math. Soc. 19(1) (1968) 336-338. Math. Review 36 #6012
- D.A. Dawson and A. Greven. Hierarchical models of interacting diffusions: Multiple time scale phenomena, phase transition and pattern of cluster-formation. Probab. Theory Related Fields 96(4) (1993) 435-473. Math. Review 94k:60155
- D.A. Dawson and A. Greven. Multiple time scale analysis of interacting diffusions. Probab. Theory Related Fields 95(4) (1993) 467-508. Math. Review 94i:60122
- D.A. Dawson and A. Greven. Multiple space-time scale analysis for interacting branching models. Electron. J. Probab., 1 (1996) no. 14, approx. 84 pp. Math. Review 97m:60148
- D.A. Dawson, A. Greven and J. Vaillancourt. Equilibria and quasi-equilibria for infinite collections of interacting Fleming-Viot processes. Trans. Amer. Math. Soc. 347(7) (1995) 2277-2360. Math. Review 95k:60248
- F. den Hollander and J.M. Swart. Renormalization of hierarchically interacting isotropic diffusions. J. Stat. Phys. 93 (1998) 243-291. Math. Review 2000c:60160
- S.N. Ethier and T.G. Kurtz. Markov Processes; Characterization and Convergence. John Wiley & Sons, New York, 1986. Math. Review 88a:60130
- N. El Karoui and S. Roelly. Propriétés de martingales, explosion et représentation de Lévy- Khintchine d'une classe de processus de branchement à valeurs mesures. Stoch. Proc. Appl. 38(2) (1991) 239-266. Math. Review 92k:60194
- W.J. Ewens. Mathematical Population Genetics. I: Theoretical Introduction. 2nd ed. Interdisciplinary Mathematics 27. Springer, New York, 2004. Math. Review 2004k:92001
- P.J. Fitzsimmons. Construction and regularity of measure-valued branching processes. Isr. J. Math. 64(3) (1988) 337-361. Math. Review 90f:60147
- K. Fleischmann and J.M. Swart. Extinction versus exponential growth in a supercritical super-Wright-Fischer diffusion. Stoch. Proc. Appl. 106(1) (2003) 141-165. Math. Review 2004h:60127
- K. Fleischmann and J.M. Swart. Trimmed trees and embedded particle systems. Ann. Probab. 32(3a) (2004) 2179-2221. Math. Review 2005m:60190
- A. Greven, A. Klenke, and A. Wakolbinger. Interacting Fisher-Wright diffusions in a catalytic medium. Probab. Theory Related Fields 120(1) (2001) 85-117. Math. Review 2002g:60160
- M. Ji\v rina. Branching processes with measure-valued states. In Trans. Third Prague Conf. Information Theory, Statist. Decision Functions, Random Processes (Liblice, 1962), pages 333-357, Czech. Acad. Sci., Prague, 1964. Math. Review 29 #5293
- O. Kallenberg. Random Measures. Akademie-Verlag, Berlin, 1976. Math. Review 55 #4373
- A. Klenke. Different clustering regimes in systems of hierarchically interacting diffusions. Ann. Probab. 24(2) (1996) 660-697. Math. Review 97h:60125
- A. Liemant. Kritische Verzweigungsprozesse mit allgemeinem Phasenraum. IV. Math. Nachr. 102 (1981) 235-254. Math. Review 83h:60049d
- M. Loève. Probability Theory 3rd ed. Van Nostrand, Princeton, 1963. Math. Review 34 #3596
- M. Loève. Probability Theory II 4th ed. Graduate Texts in Mathematics 46. Springer, New York, 1978. Math. Review 58 #31324b
- A. Pazy. Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, New York, 1983. Math. Review 85g:47061
- L.C.G. Rogers and D. Williams. Diffusions, Markov Processes, and Martingales, Volume 2: Ito Calculus. Wiley, Chichester, 1987. Math. Review 89k:60117
- F. Schiller. Application of the Multiple Space-Time Scale Analysis on a System of R-valued, Hierarchically Interacting, Stochastic Differential Equations. Master thesis, Universtity Erlangen-Nürnberg, 1998. Math. Review number not available.
- S. Sawyer and J. Felsenstein. Isolation by distance in a hierarchically clustered population. J. Appl. Probab. 20 (1983) 1-10. Math. Review 84h:92022
- T. Shiga. An interacting system in population genetics. J. Math. Kyoto Univ. 20 (1980) 213-242. Math. Review 82e:92029a
- J.M. Swart. Large Space-Time Scale Behavior of Linearly Interacting Diffusions. PhD thesis, Katholieke Universiteit Nijmegen, 1999. Math. Review number not available.
- J.M. Swart. Clustering of linearly interacting diffusions and universality of their long-time limit distribution. Prob. Theory Related Fields 118 (2000) 574-594. Math. Review 2002b:60180
- T. Yamada and S. Watanabe. On the uniqueness of solutions of stochastic differential equations. J. Math. Kyoto Univ. 11 (1971) 155-167. Math. Review 43 #4150

This work is licensed under a Creative Commons Attribution 3.0 License.