Download this PDF file Fullscreen Fullscreen Off
References
- M. Balázs. Growth fluctuations in a class of deposition models. Ann. Inst. H. Poincaré - PR, 39:639--685, 2003. Math. Review 2005j:60178a
- P. Brémaud. Markov chains, volume 31 of Texts in Applied Mathematics. Springer-Verlag, New York, 1999. Gibbs fields, Monte Carlo simulation, and queues. Math. Review 2000k:60137
- E. Cator and P. Groeneboom. Second class particles and cube root asymptotics for Hammersley's process. Ann. Probab., 34(4), 2006. Math. Review number not available.
- P. A. Ferrari and L. R. G. Fontes. Current fluctuations for the asymmetric simple exclusion process. Ann. Probab., 22:820--832, 1994. Math. Review 95j:60162
- P. A. Ferrari and C. Kipnis. Second class particles in the rarefaction fan. Ann. Inst. H. Poincaré - PR., 31(1):143--154, 1995. Math. Review 96m:60236
- P. A. Ferrari, J. B. Martin, and L. P. R. Pimentel. Roughening and inclination of competition interfaces. Phys. Rev. E., 73:031602, 2006. Math. Review number not available.
- P. A. Ferrari and L. P. R. Pimentel. Competition interfaces and second class particles. Ann. Probab., 33(4):1235--1254, 2005. Math. Review 2006e:60141
- P. L. Ferrari and H. Spohn. Scaling limit for the space-time covariance of the stationary totally asymmetric simple exclusion process. Comm. Math. Phys., 265(1):1--44, 2006. A review for this item is in process.
- K. Johansson. Shape fluctuations and random matrices. Comm. Math. Phys., 209:437--476, 2000. Math. Review 2001h:60177
- C. Kipnis and C. Landim. Scaling limits of interacting particle systems. Springer-Verlag, Berlin, 1999. Math. Review 2000i:60001
- T. Mountford and H. Guiol. The motion of a second class particle for the TASEP starting from a decreasing shock profile. Ann. Appl. Probab., 15(2):1227--1259, 2005. Math. Review 2006d:60152
- S. C. Port and C. J. Stone. Infinite particle systems. Trans. Am. Math. Soc., 178:307--340, 1973. Math. Review 48 #5210
- M. Prähofer and H. Spohn. Current fluctuations for the totally asymmetric simple exclusion process. In V. Sidoravicius, editor, Progress of probab.: In and out equilibrium; probability with a physics flavor, volume 51. Birkhäuser, 2002. Math. Review 2003e:60224
- T. Seppäläinen. Hydrodynamic scaling, convex duality and asymptotic shapes of growth models. Markov Process. Related Fields, 4(1):1--26, 1998. Math. Review 99e:60221
- T. Seppäläinen. Existence of hydrodynamics for the totally asymmetric simple K-exclusion process. Ann. Probab., 27(1):361--415, 1999. Math. Review 2000i:60116
- T. Seppäläinen. Second class particles as microscopic characteristics in totally asymmetric nearest-neighbor K-exclusion processes. Trans. Amer. Math. Soc., 353:4801--4829, 2001. Math. Review 2003f:60180
- J. Walrand. Introduction to Queueing Networks. Prentice Hall, New Jersey, 1989. Math. Review number not available.

This work is licensed under a Creative Commons Attribution 3.0 License.