Download this PDF file Fullscreen Fullscreen Off
References
- Dubins, L., Shepp, L. A. and Shiryaev, A. N. (1993), Optimal stopping rules and maximal inequalities for Bessel processes, Theory Probab. Appl. 38 , 226-261. MR 96j:60077
- Duffie, J. D. and Harrison, J. M. (1993), Arbitrage pricing of Russian options and perpetual lookback options, Ann. Appl. Probab. 3 , 641-651. MR 94i:90028
- Duistermaat, J. J., Kyprianou, A. E. and van Schaik, K. (2003), Finite expiry Russian options, Stoch. Proc. Appl. 115 , 609-638. MR 2006a:91054
- Dynkin, E. B. (1963), The optimum choice of the instant for stopping a Markov process, Soviet Math. Dokl. 4, 627-629. MR 27 #4278
- EkstrËm, E. (2004), Russian options with a finite time horizon, J. Appl. Probab. 41, 313-326. MR 2005b:91112
- Gapeev, P. V. and Peskir, G. (2004), The Wiener sequential testing problem with finite horizon, Stoch. Stoch. Rep. 76, 59-75. MR 2004k:62185
- Gapeev, P. V. and Peskir, G. (2006), The Wiener disorder problem with finite horizon, To appear in Stoch. Proc. Appl. (22 pp). Math. Review number not available.
- Grigelionis, B. I. and Shiryaev, A. N. (1966), On Stefan's problem and optimal stopping rules for Markov processes, Theory Probab. Appl. 11, 541-558. MR 35 #7538
- Guo, X. and Shepp, L. A. (2001), Some optimal stopping problems with nontrivial boundaries for pricing exotic options, J. Appl. Probab. 38, 647-658. MR 2002h:91054
- Jacka, S. D. (1991), Optimal stopping and the American put, Math. Finance 1, 1-14. Math. Review number not available.
- Karatzas, I. and Shreve, S. E. (1998), Methods of Mathematical Finance, Springer, New York. MR 2000e:91076
- McKean, H. P. Jr. (1965), Appendix: A free boundary problem for the heat equation arising form a problem of mathematical economics, Ind. Management Rev. 6, 32-39. Math. Review number not available.
- Myneni, R. (1992), The pricing of the American option, Ann. Appl. Probab. 2, 1-23. MR 92h:90018
- Pedersen, J. L. (2000), Discounted optimal stopping problems for the maximum process, J. Appl. Probab. 37, 972-983. MR 2001m:60099
-
Pedersen, J. L. and Peskir, G. (2002),
On nonlinear integral equations arising in problems of optimal stopping,
Proc. Functional Anal. VII (Dubrovnik 2001),
Various Publ. Ser. 46, 159-175.
MR 2004c:60127
- Peskir, G. (1998), Optimal stopping of the maximum process: The maximality principle, Ann. Probab. 26, 1614-1640. MR 2000c:60052
- Peskir, G. (2004), A change-of-variable formula with local time on surfaces, To appear in Sem. de Probab. (Lecture Notes in Mathematics) Springer (23 pp). Math. Review number not available.
- Peskir, G. (2005), On the American option problem, Math. Finance 15, 169-181. MR 2005i:91066
- Peskir, G. (2005), The Russian option: finite horizon, Finance Stochast. 9, 251-267. MR 2211127
- Peskir, G. and Shiryaev, A. N. (2006), Optimal Stopping and Free-Boundary Problems, Bikkhâ°user, Basel. Math. Review number not available.
- Peskir, G. and Uys, N. (2005), On Asian options of American type, In the Volume Exotic Options and Advanced Levy Models, Wiley, Chichester, 217-235. Math. Review number not available.
- Revuz, D. and Yor, M. (1999), Continuous Martingales and Brownian Motion, Springer, Berlin. MR 2000h:60050
- Shepp, L. A. and Shiryaev, A. N. (1993), The Russian option: reduced regret, Ann. Appl. Probab. 3, 631-640. MR 94i:90027
- Shepp, L. A. and Shiryaev, A. N. (1994), A new look at the pricing of Russian options, Theory Probab. Appl. 39, 103-119. MR 97e:90007
- Shepp, L. A., Shiryaev, A. N. and Sulem, A. (2002), A barrier version of the Russian option, Advances in Finance and Stochastics, Essays in Honour of Dieter Sondermann, Sandmann, K. and SchËnbucher, P. eds. Springer, 271-284. MR 2003c:00024
- Shiryaev, A. N. (1978), Optimal Stopping Rules, Springer, Berlin. MR 57 #7906
- Shiryaev, A. N. (1999), Essentials of Stochastic Finance, World Scientific, Singapore. MR 2000e:91085
- van Moerbeke, P. (1976), On optimal stopping and free-boundary problems, Arch. Rational Mech. Anal. 60, 101-148. MR 54 #1367

This work is licensed under a Creative Commons Attribution 3.0 License.