Download this PDF file Fullscreen Fullscreen Off
References
- J. Bertoin. LÃvy processes. Cambridge University Press, Cambridge, (1996) Math. Review 1406564
- J. Bertoin and M.E. Caballero. Entrance from $0+$ for increasing semi-stable Markov processes. Bernoulli, 8 (2002), no. 2,195--205, . Math. Review 1895890
- J. Bertoin and M. Yor. The entrance laws of self-similar Markov processes and exponential functionals of LÃvy processes. Potential Anal. 17 (2002), no. 4, 389--400. Math. Review 1918243
- N. Bingham, C.M. Goldie and J.L. Teugels. Regular variation. Cambridge University Press, Cambridge, 1989. Math. Review 1015093
- M.E. Caballero and L. Chaumont. Weak convergence of positive self-similar Markov processes and overshoots of LÃvy processes. Ann. Probab., 34 (2006), no. 3, 1012--1034. Math. Review 2243877
- L. Chaumont. Conditionings and path decompositions for LÃvy processes. Stochastic Process. Appl. 64 (1996), no. 1, 39--54. Math. Review 1419491
- L. Chaumont. Excursion normalisÃe, mÃandre et pont pour des processus stables. Bull. Sc. Math., 121 (1997), 377-403. Math. Review 1465814
- Y.S. Chow. On moments of ladder height variables. Adv. in Appl. Math. 7 (1986), no. 1, 46--54. Math. Review 0834219
- R.A. Doney. Stochastic bounds for LÃvy processes. Ann. Probab., 32 (2004), no. 2, 1545--1552. Math. Review 2060308
- R.A. Doney and R.A. Maller. Stability of the overshoot for LÃvy processes. Ann. Probab. 30 (2002), no. 1, 188--212. Math. Review 1894105
- A. Dvoretzky and P. ErdËs. Some problems on random walk in space. Proceedings of the Second Berkeley Symposium. University of California Press, Berkeley and Los Angeles, 1951. Math. Review 0047272
- S. Janson. Moments for first-passage and last-exit times, the minimum, and related quantities for random walks with positive drift. Adv. Appl. Probab., 18 (1986), 865-879. Math. Review 0867090
- S. Kochen and C. Stone. A note on the Borel-Cantelli lemma. Illinois J. Math., 8 (1964), 248--251. Math. Review 0161355
- J. Lamperti. Semi-stable stochastic processes. Trans. Amer. Math. Soc., 104 (1962), 62--78. Math. Review 0138128
- J. Lamperti. Semi-stable Markov processes. I. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 22 (1972), 205--225. Math. Review 0307358
- K. Maulik and B. Zwart. Tail asymptotics for exponential functionals of LÃvy processes, Stochastic Process. Appl., 116 (2006), 156--177. Math. Review 2197972
- M. Motoo. Proof of the law of iterated logarithm through diffusion equation. Ann. Inst. Statist. Math., 10 (1958), 21--28. Math. Review 0097866
- V. Rivero. A law of iterated logarithm for increasing self-similar Markov processes. Stoch. Stoch. Rep., 75 (2003), no. 6, 443--472. Math. Review 2029617
- V. Rivero. Recurrent extensions of self-similar Markov processes and Cram\'er's condition. Bernoulli, 11 (2005), no. 3, 471--509. Math. Review 2146891
- T. Watanabe. Sample function behavior of increasing processes of class L. Probab. Theory Related Fields, 104 (1996), no. 3, 349--374. Math. Review 1376342
- Y. Xiao. Asymptotic results for self-similar Markov processes. Asymptotic methods in probabilty and statistics (Ottawa, ON, 1997), 323-340, North-Holland, Amsterdam, 1998. Math. Review 1661490

This work is licensed under a Creative Commons Attribution 3.0 License.