Download this PDF file Fullscreen Fullscreen Off
References
- Borodin, A, Okounkov, A., and Olshanski, G. (2000). Asymptotics of Plancherel measures for symmetric groups. J. Amer. Math. Soc. 13, 481-515. Math. Review 2001g:05103
- Burton, R., and Pemantle, R. (1993). Local characteristics, entropy, and limit theorems for spanning trees and domino tilings via transfer-impedances. Ann. Probab. 21. 1329-1371. Math. Review 94m:60019
- Costin, O. and Lebowitz, J. (1995). Gaussian fluctuations in random matrices. Phys. Review Letters 75, 69-72.
- Diaconis, P. (2003). Patterns in eigenvalues: the 70th Josiah Willard Gibbs lecture. Linear functionals of eigenvalues of random matrices. Bull. Amer. Math. Soc. 40, 155-178. Math. Review 2004d:15017
- Diaconis, P. and Evans, S.N. (2001). Linear functionals of eigenvalues of random matrices. Trans. AMS 353, 2615-2633. Math. Review 2002d:60003
- Ginibre, J. (1965). Statistical ensembles of complex, quaternion, and real matrices. J. Math. Phys. 6, 440-449. Math. Review 30 #3936
- Helgason, S. Geometric analysis on symmetric spaces, Volume~39 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 1994. Math. Review 96h:43009
- Hough, J., Krishnapur, M., Peres, Y., and Virag, B. (2006) Determinantal processes and independence. Probab. Surveys. 3, 206-229. Math. Review 2006m:60068
- Math. Review 2002m:82028
- Krishnapur, M. (2006) Zeros of Random Analytic Functions. Ph. D. thesis. Univ. of Ca., Berkeley. arXiv:math.PR/0607504 .
- Lyons, R. (2003). Determinantal probability measures. Publ. Math. Inst. Hautes Etudes Sci. 98, 167-212. Math. Review 2005b:60024
- Lyons, R., and Steif, J. (2003). Stationary determinantal processes: phase multiplicity, Bernoullicity, entropy, and domination. Duke Math J. 120, 515-575. Math. Review 2004k:60100
- Macchi, O. (1975). The coincidence approach to stochastic point processes. Adv. Appl. Probab. 7, 83-122. Math. Review 52 #1876
- Peres, Y. and Virag, B. (2005). Zeros of the i.i.d. Gaussian power series: a conformally invariant determinantal process. Acta. Math., 194, 1-35.
- Rider, B., and Virag, B. (2007). The noise in the circular law and the Gaussian free field. Int. Math. Res. Notices, 2007, article ID rnm006, 32pp.
- Sheffield, S. (2005). Gaussian free fields for mathematicians. Preprint, arXiv:math.PR/0312099.
- Shirai, T. and Takahashi, Y. (2003) Random point fields associated with certain Fredholm determinants. II. Fermion shifts and their ergodic and Gibbs properties. Ann. Probab. 31 no. 3, 1533-1564. Math. Review 2004k:60146
- Sodin, M. and Tsielson, B. (2006) Random complex zeroes, I. Asymptotic normalitiy. Israel Journal of Mathematics 152, 125-149. Math. Review 2005k:60079
- Soshnikov, A. (2000) Determinantal random fields. Russian Math. Surveys 55, no. 5, 923-975. Math. Review 2002f:60097
- Soshnikov, A (2000). Central Limit Theorem for local linear statistics in classical compact groups and related combinatorial identities. Ann. Probab. 28, 1353-1370. Math. Review 2002f:15035
- Soshnikov, A (2002). Gaussian limits for determinantal random point fields. Ann. Probab. 30, 171-181. Math. Review 2003e:60106

This work is licensed under a Creative Commons Attribution 3.0 License.