Download this PDF file Fullscreen Fullscreen Off
References
- D. Aldous and P. Diaconis, Hammersley's interacting particle process and longest increasing subsequences, Probab. Theory Relat. Fields 103, (1995), 199--213. Math Review article not available.
- R. Durrett, Probability: Theory and Examples, Wadsworth, Pacific Grove (1991). Math Review link
- M. Ekhaus and T. Sepp"al"ainen, Stochastic dynamics macroscopically governed by the porous medium equation for isothermal flow, Ann. Acad. Sci. Fenn. Ser. A I Math (to appear). Math Review article not available.
- S. N. Ethier and T. G. Kurtz, Markov Processes: Characterization and Convergence, Wiley, New York (1985). Math Review link
- S. Feng, I. Iscoe, and T. Sepp"al"ainen, A class of stochastic evolutions that scale to the porous medium equation, J. Statist. Phys. ( to appear). Math Review article not available.
- P. A. Ferrari, Shocks in one-dimensional processes with drift, Probability and Phase Transitions, ed. G. Grimmett, Kluwer Academic Publishers (1994). Math Review link
- J. M. Hammersley, A few seedlings of research, Proc. Sixth Berkeley Symp. Math. Stat. Probab. Vol. I, (1972), 345--394. Math Review link
- C. Kipnis, Central limit theorems for infinite series of queues and applications to simple exclusion, Ann. Probab. 14, (1986), 397--408. Math Review link
- P. Lax, Hyperbolic systems of conservation laws II, Comm. Pure Appl. Math. 10, (1957), 537--566. Math Review link
- P. Lax, Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves, SIAM, Philadelphia, (1973). Math Review link
- T. M. Liggett, Interacting Particle Systems, Springer-Verlag, New York, (1985). Math Review link
- P. L. Lions, Generalized Solutions of Hamilton-Jacobi Equations, Pitman, London (1982). Math Review link
- F. Rezakhanlou, Hydrodynamic limit for attractive particle systems on $mmZ^d$, Comm. Math. Phys. 140, (1991), 417--448. Math Review link
- R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, (1970). Math Review link
- H. Rost, Non-equilibrium behaviour of a many particle process: Density profile and local equilibrium, Z. Wahrsch. Verw. Gebiete 58, (1981), 41--53. Math Review link
- J. Smoller, Shock Waves and Reaction-Diffusion Equations, Springer-Verlag, New York, (1983). Math Review link
- Y. Suzuki and K. Uchiyama, Hydrodynamic limit for a spin system on a multidimensional lattice, Probab. Theory Relat. Fields 95, (1993), 47--74. Math Review link

This work is licensed under a Creative Commons Attribution 3.0 License.