Download this PDF file Fullscreen Fullscreen Off
References
- M. Aizenmann and G. Grimmett, Strict Monotonicity for Critical Points in Percolation and Ferromagnetic Models, J. Stat. Phys. 63 (1991) 817-835 Math. Review 92i:82060
- C. Borgs, J. Chayes, H. Kesten and J. Spencer, The Birth of the Infinite Cluster: Finite-Size Scaling in Percolation, Comm. Math. Phys. 224 (2001) 153-204 Math. Review 2002k:60199
- F.Camia, L.R. Fontes and C.M. Newman, The Scaling Limit Geometry of Near-Critical 2D Percolation, J.Stat.Phys. 125 (2006) 1155-1171 Math. Review 2007k:82053
- F. Camia, L.R. Fontes and C.M. Newman, Two-Dimensional Scaling Limits via Marked Nonsimple Loops, Bull. Braz. Math. Soc. 37 (2006) 537-559 MR2284886
- J.T. Chayes and L. Chayes, The large-$N$ limit of the threshold values in Mandelbrot's fractal percolation process, J.Phys.A: Math. Gen. 22 (1989) L501--L506 Math. Review 90h:82044
- J.T. Chayes, L. Chayes and R. Durrett, Connectivity Properties of Mandelbrot's Percolation Process, Probab. Theory Relat. Fields 77 (1988) 307-324 Math. Review 89d:60193
- J.T. Chayes, L. Chayes, E. Grannan and G. Swindle, Phase transitions in Mandelbrot's percolation process in three Probab. Theory Relat. Fields 90 (1991) 291-300 Math. Review 93a:60156
- L. Chayes, Aspects of the fractal percolation process, Progress in Probability 37 (1995) 113-143 Math. Review 97g:60131
- L. Chayes and P. Nolin, Large Scale Properties of the IIIC for 2D Percolation preprint (2007)
- F.M. Dekking and G.R. Grimmett, Superbranching processes and projections of random Cantor sets, Probab. Theory Relat. Fields 78 (1988) 335-355 Math. Review 89f:60099
- F.M. Dekking and R.W.J. Meester, On the structure of Mandelbrot's percolation process and other Random Cantor sets J. Stat. Phys. 58 (1990) 1109-1126 Math. Review 91c:60140
- K.J. Falconer and G.R. Grimmett, The critical point of fractal percolation in three and more dimensions, J. Phys. A: Math. Gen. 24 (1991) L491--L494 Math. Review 92g:82053
- K.J. Falconer and G.R. Grimmett, On the geometry of Random Cantor Sets and Fractal Percolation, J. Theor. Probab. 5 (1992) 465-485 Math. Review 94b:60115
- G. Grimmett, Percolation Second edition, Springer-Verlag, Berlin (1999) Math. Review 2001a:60114
- H. Kesten, Scaling Relations for 2D-Percolation, Commun. Math. Phys. 109 (1987) 109-156 Math. Review 88k:60174
- B.B. Mandelbrot, The Fractal Geometry of Nature W.H. Freeman, San Francisco (1983) Math. Review 84h:00021
- R.W.J. Meester, Connectivity in fractal percolation, 5 (1992) 775-789 Math. Review 93m:60201
- M.V.Menshikov, S.Yu. Popov and M. Vachkovskaia, On the connectivity properties of the complementary set in fractal percolation models, Probab. Theory Relat. Fields 119 (2001) 176-186 Math. Review 2002d:60085
- P. Nolin, Near-critical percolation in two dimensions, preprint arXiv:0711.4948
- P. Nolin, W. Werner, Asymmetry of near-critical percolation interfaces, preprint arXiv:0710.1470
- M.E. Orzechowski, On the Phase Transition to Sheet Percolation in Random Cantor Sets J. Stat. Phys. 82 (1996) 1081-1098 Math. Review 97e:82022
- S. Smirnov and W. Werner, Critical exponents for two-dimensional percolation, Math. Res. Lett. 8 (2001) 729-744 Math. Review 2003i:60173
- D.G. White, On fractal percolation in ${mathbb R}^2$, Statist. Probab. Lett. 45 (1999) 187-190 Math. Review 2000i:60117

This work is licensed under a Creative Commons Attribution 3.0 License.