Download this PDF file Fullscreen Fullscreen Off
References
- S. Albeverio and B. Rüdiger, Stochastic integrals and the Lévy-Ito decomposition theorem on separable Banach spaces, Stoch. Anal. Appl. 23 (2005), no. 2, 217-253. Math. Review MR2130348
- D. Applebaum, Lévy processes and stochastic calculus, Cambridge University Press, Cambridge, 2004. Math. Review MR2072890
- D.Applebaum, Martingale-valued measures, Ornstein-Uhlenbeck processes with jumps and operator self-decomposability in Hilbert space, Lecture Notes in Math., vol. 1874, Springer, Berlin, 2006, pp. 171-196. Math. Review MR2276896
- V. Barbu, Analysis and control of nonlinear infinite-dimensional systems, Academic Press, Boston, MA, 1993. Math. Review MR1195128
- S. Bonaccorsi and G. Ziglio, A semigroup approach to stochastic dynamical boundary value problems, Systems, control, modeling and optimization, IFIP Int. Fed. Inf. Process., vol. 202, Springer, New York, 2006, pp. 55-65. Math. Review MR2241696
- H. Brezis, Monotonicity methods in Hilbert spaces and some applications to non-linear partial differential equations, Contributions to nonlinear functional analysis (Proc. Sympos., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1971), Academic Press, New York, 1971, pp. 101-156. Math. Review MR0394323
- H. Brezis, Analyse fonctionnelle, Masson, Paris, 1983. Math. Review MR0697382
- S. Cerrai, Second order PDE's in finite and infinite dimension, Lecture Notes in Mathematics, vol. 1762, Springer-Verlag, Berlin, 2001. MR 2002j:35327 Math. Review MR1840644
- A. Chojnowska-Michalik, On processes of Ornstein-Uhlenbeck type in Hilbert space, Stochastics 21 (1987), no. 3, 251-286. Math. Review MR0900115
- G. Da Prato, Kolmogorov equations for stochastic PDEs, Birkhäuser Verlag, Basel, 2004. Math. Review MR2111320
- G. Da Prato and J. Zabczyk, Stochastic equations in infinite dimensions, Cambridge University Press, Cambridge, 1992. Math. Review MR1207136
- G. Da Prato and J. Kabczyk, Ergodicity for infinite-dimensional systems, Cambridge University Press, 1996. Math. Review MR1417491
- R. E. Edwards, Functional analysis. Theory and applications, Holt, Rinehart and Winston, New York, 1965. Math. Review MR0221256
- I. I. Gihman and A. V. Skorohod, The theory of stochastic processes. III, Springer- Verlag, Berlin, 1979. Math. Review MR0651015
- E. Hausenblas, Existence, uniqueness and regularity of parabolic SPDEs driven by Poisson random measure, Electron. J. Probab. 10 (2005), 1496-1546 (electronic). Math. Review MR2191637
- A.L. Hodgkin and A.F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve, J. Physiol. 117 (1952), no. 2, 500-544.
- G. Kallianpur and R. Wolpert, Infinite-dimensional stochastic differential equation models for spatially distributed neurons, Appl. Math. Optim. 12 (1984), no. 2, 125-172. Math. Review MR0764813
- G. Kallianpur and J. Xiong, Diffusion approximation of nuclear space-valued stochastic differential equations driven by Poisson random measures, Ann. Appl. Probab. 5 (1995), no. 2, 493-517. Math. Review MR1336880
- J. Keener and J. Sneyd, Mathematical physiology, Springer, New York, 1998. Math. Review MR1673204
- P. Kotelenez, A stopped Doob inequality for stochastic convolution integrals and stochastic evolution equations, Stochastic Anal. Appl. 2 (1984), no. 3, 245{265. Math. Review MR0757338
- M. Kramar Fijavz, D. Mugnolo, and E. Sikolya, Variational and semigroup methods for waves and diffusion in networks, Appl. Math. Optim. 55 (2007), no. 2, 219{240. Math. Review MR2305092
- J.-L. Lions and E. Magenes, Non-homogeneous boundary value problems and applications. Vol. I, Springer-Verlag, New York, 1972. Math. Review MR0350177
- A. Lunardi, Analytic semigroups and optimal regularity in parabolic problems, Birkhäuser Verlag, Basel, 1995. Math. Review MR1329547
- D. Mugnolo and S. Romanelli, Dynamic and generalized Wentzell node conditions for network equations, Math. Methods Appl. Sci. 30 (2007), no. 6, 681{706. Math. Review MR230184
- E. M. Ouhabaz, Analysis of heat equations on domains, Princeton University Press, Princeton, NJ, 2005. Math. Review MR2124040
- Sz. Peszat and J. Zabczyk, Stochastic partial differential equations with Lévy noise, Cambridge University Press, Cambridge, 2007. Math. Review MR2356959
- C. Rocsoreanu, A. Georgescu, and N. Giurgiteanu, The FitzHugh-Nagumo model, Kluwer Academic Publishers, Dordrecht, 2000. Math. Review MR1779040
- J. B. Walsh, An introduction to stochastic partial di erential equations, Lecture Notes in Math., vol. 1180, Springer, Berlin, 1986, pp. 265-439. Math. Review MR0876085

This work is licensed under a Creative Commons Attribution 3.0 License.