Download this PDF file Fullscreen Fullscreen Off
References
- H.-O. Georgii. Gibbs Measures and Phase Transitions. de Gruyter Studies in Mathematics (1988) Math. Review 89k:82010
- C. Müller. Spherical Harmonics. Lecture Notes in Mathematics 17 Springer (1966). Math. Review 33:7593
- C. Külske and A. Le Ny. Spin-flip dynamics of the Curie-Weiss model: Loss of Gibbsianness with possibly broken symmetry. Commun. Math. Phys. 271, 431-454 (2007). Math. Review 2008f:82058
- A.C.D. van Enter, R. Fernàndez, F. den Hollander and F. Redig. Possible Loss and recovery of Gibbsianness during the stochastic evolution of Gibbs Measures. Commun. Math. Phys. 226, 101-130 (2002). Math. Review 2003e:82040
- R. Fernàndez. Gibbsianness and non-Gibbsianness in lattice random fields. Les Houches, LXXXIII, (2005). Math. Review number not available.
- C. Külske. Concentration Inequalities for Functions of Gibbs Fields with Applications to Diffraction and Random Gibbs Measures. Commun. Math. Phys. 239, 29-51 (2003). Math. Review 2004i:60069
- C. Külske, J.-R. Chazottes, P. Collet and F. Redig. Concentration Inequalities for random fields via Coupling. Prob. Theory Relat. Fields 137, 201-225 (2006). Math. Review MR2278456
- A.C.D. van Enter and C. Külske. Two connections between random systems and non-Gibbsian measures. J. Stat. Phys. 126, 1007-1024 (2007). Math. Review 2008f:82037
- A. Le Ny and F. Redig. Short-time conservation of Gibbsianness under local stochastic evolution. J. Stat. Phys. Volume 109, 1073-1090 (2002). Math. Review 2003i:82060
- C. Külske, F. Redig. Loss without recovery of Gibbsianness during diffusion of continuous spins. Prob. Theory Relat. Fields 135, 428-456 (2006). Math. Review 2007g:82036
- A.C.D. van Enter, R. Fernàndez and A.D. Sokal. Regularity properties and pathologies of position-space renormalization-group transformations: Scope and limitations of Gibbsian theory. J. Stat. Phys. 72, 879-1167 (1993). Math. Review 94m:82012
- C. Külske. Non-Gibbsianness and phase transitions in random lattice spin models. Markov. Proc. Rel. Fields 5, 357-383 (1999). Math. Review 2001a:82042
- T. Lindvall and L.C.G. Rogers. Coupling of multidimensional Diffusion by Reflection. Ann. Probab. 14, 860-872 (1986). Math. Review 88b:60179
- R.L. Dobrushin. The description of a random field by means of conditional probabilities and conditions of its regularity. Theor. Prob. Appl. 13, 197-224 (1968). Math. Review number not available.
- I. Karatzas and S.T. Shreve. Brownian Motion and Stochastic Calculus, 2ed. Springer- Verlag, GTM 113 (1991). Math. Review 92h:60127
- P. Lévy. Processus Stochastiques et Mouvement Brownien. Gauthier-Villars, Paris (1948). Math. Review 10,551a
- A.C.D. van Enter and W.M. Ruszel. Gibbsianness vs. Non-Gibbsianness of time-evolved planar rotor models. arXiv:0711.3621v1 (2007). Math. Review number not available.
- C. Külske and A.A. Opoku. Continuous Spin Mean-Field models: Limiting kernels and Gibbs Properties of local transforms. arXiv:0806.0802 (2008). Math. Review number not available.
- R.L. Dobrushin and M. Zahradník. Phase diagrams for continuous-spin models: An extension of the Pirogov-Sinai Theory. Math. Problems of Stat. Phys. and Dynamics, Reidel, 1-123 (1986). Math. Review 88k:82015
- R.B. Israel. High-Temperature Analyticity in Classical Lattice Systems. Commun. Math. Phys. 50, 245-257 (1976). Math. Review 56:4578
- J.-D. Deuschel. Infinite-dimensional diffusion processes as Gibbs measures on C[0; 1]^(Z^d). Prob. Theory Relat. Fields 76, 325-340 (1987). Math. Review 89m:60252
- D. Dereudre and S. Roelly. Propagation of Gibbsianness for infinite-dimensional gradient Brownian diffusions. J. Stat. Phys. 121, 511-551 (2005). Math. Review 2006m:82094
- R. Fernàndez and G. Maillard. Construction of a specification from its singleton part. ALEA Lat. Am. J. Probab. Math. Stat. 2, 297-315 (2006) Math. Review 2007k:60322
- P. Auscher, T. Coulhon, X.T. Duong and S. Hofmann. Riesz transform on manifolds and heat kernel regularity. Ann. Sci. Ecole Norm. Sup. 37, 911-957 (2004). Math. Review 2005k:58043
- J. Fröhlich, B. Simon and T. Spencer. Infrared bounds, phase transitions and continuous symmetry breaking. Comm. Math. Phys. 50 79-95 (1976). Math. Review 54:9530
- P. Bilingsley. Probability and Measure 3rd ed. A Wiley-Interscience Publication (1995). Math. Review 95k:60001

This work is licensed under a Creative Commons Attribution 3.0 License.