Download this PDF file Fullscreen Fullscreen Off
References
- S.R. Athreya, M.T. Barlow, R.F. Bass, and E.A. Perkins, Degenerate stochastic differential equations and super-Markov chains. Prob. Th. Rel. Fields 123 (2002), 484--520. MR1921011 (2003g:60096)
- R.F. Bass, Probabilistic Techniques in Analysis, Springer, Berlin 1995. MR1329542 (96e:60001)
- R.F. Bass, Diffusions and Elliptic Operators, Springer, Berlin, 1998. MR1483890 (99h:60136)
- R.F. Bass and E.A. Perkins, Degenerate stochastic differential equations with Hölder continuous coefficients and super-Markov chains. Trans. Amer. Math. Soc. 355 (2003) 373--405. MR1928092 (2003m:60144)
- D.A. Dawson and K. Fleischmann, Catalytic and mutually catalytic branching. In: Infinite Dimensional Stochastic analysis, Ned. Acak. Wet., Vol. 52, R. Neth. Acad. Arts Sci., Amsterdam, 2000, pp. 145--170. MR1831416 (2002f:60164)
- D.A. Dawson, K. Fleischmann, and J. Xiong, Strong uniqueness for cyclically catalytic symbiotic branching diffusions. Statist. Probab. Lett. 73 (2005) 251--257. MR2179284 (2006h:60097)
- D.A. Dawson, A. Greven, F. den Hollander, Rongfeng Sun, and J.M. Swart, The renormalization transformation for two-type branching models, to appear Ann. de l'Inst. H. Poincaré, Prob. et Stat.
- D.A. Dawson and E.A. Perkins, On the uniqueness problem for catalytic branching networks and other singular diffusions. Illinois J. Math. 50 (2006) 323--383. MR2247832 (2007i:60099)
- D.A. Dawson and E. A. Perkins, Long-time behaviour and coexistence in a mutually catalytic branching model. Ann. Probab. 26 (1998) 1088--1138. MR1634416 (99f:60167)
- M. Eigen and P. Schuster, The Hypercycle: a Principle of Natural Self-organization, Springer, Berlin, 1979.
- C. Fefferman, Recent progress in classical Fourier analysis. Proceedings of the International Congress of Mathematicians, Vol. 1, pp. 95--118. Montréal, Canadian Math. Congress, 1975. MR0510853 (58#23308)
- K. Fleischmann and J. Xiong, A cyclically catalytic super-Brownian motion. Ann. Probab. 29 (2001) 820--861. MR1849179 (2002h:60224)
- S. Kliem, Degenerate stochastic differential equations for catalytic branching networks, to appear in Ann. de l'Inst. H. Poincaré, Prob. et Stat.
- L. Mytnik, Uniqueness for a mutually catalytic branching model. Prob. Th. Rel. Fields 112 (1998) 245-253. MR1653845 (99i:60125)
- E.A. Perkins, Dawson-Watanabe Superprocesses and Measure-Valued Diffusions, In: Lectures on Probability and Statistics, Ecole d''Eté de Probabilités de Saint-Flour XXIX (1999), LNM vol. 1781, Springer-Verlag, Berlin, 2002, pp. 125--324. MR1915445 (2003k:60104)
- D. Revuz and M. Yor, Continuous Martingales and Brownian Motion, Berlin, Springer-Verlag, 1991. MR1083357 (92d:60053)
- D.W. Stroock and S.R.S. Varadhan, Multidimensional Diffusion Processes, Springer-Verlag, Berlin 1979. MR0532498 (81f:60108)
- A. Torchinsky, Real-variable methods in harmonic analysis. Academic Press, Orlando, FL, 1986. MR0869816 (88e:42001)

This work is licensed under a Creative Commons Attribution 3.0 License.