Delay equations driven by rough paths
Ivan Nourdin (Université Paris 6)
Samy Tindel (Université Nancy 1)
Abstract
In this article, we illustrate the flexibility of the algebraic integration formalism introduced in M. Gubinelli, J. Funct. Anal. 216, 86-140, 2004, Math. Review 2005k:60169, by establishing an existence and uniqueness result for delay equations driven by rough paths. We then apply our results to the case where the driving path is a fractional Brownian motion with Hurst parameter $H>1/3$.
Full Text: Download PDF | View PDF online (requires PDF plugin)
Pages: 2031-2068
Publication Date: November 11, 2008
DOI: 10.1214/EJP.v13-575
References
- E. Alòs, J.A. Léon and D. Nualart. Stochastic Stratonovich calculus for fractional Brownian motion with Hurst parameter lesser than 1/2. Taiwanese J. Math. 5 (2001), 609-632. Math. Review 2000m:60059
- E. Alòs and D. Nualart. Stochastic integration with respect to the fractional Brownian motion. Stochastics Stochastics Rep. 75 (2002), 129-152. Math. Review 2004b:60138
- P. Carmona, L. Coutin and G. Montseny. Stochastic integration with respect to fractional Brownian motion. Ann. Inst. Henri Poincaré, Probab. Stat. 39 (2003), 27-68. Math. Review 2003m:60095
- P. Cheridito and D. Nualart. Stochastic integral of divergence type with respect to fractional Brownian motion with Hurst parameter H in (0,1/2). Ann. Inst. H. Poincaré, Probab. Stat. 41 (2005), 1049-1081. Math. Review 2006m:60051
- L. Coutin and Z. Qian. Stochastic analysis, rough path analysis and fractional Brownian motions. Probab. Theory Related Fields 122 (2002), 108-140. Math. Review 2003c:60066
- L. Decreusefond. Stochastic integration with respect to fractional Brownian motion. In: P. Doukhan (ed.) et al. Theory and applications of long-range dependence. Birkhäuser Boston 2003, 203-226. Math. Review MR1956051
- M. Ferrante and C. Rovira. Stochastic delay differential equations driven by fractional Brownian motion with Hurst parameter H>1/2. Bernoulli 12 (2006), 85-100. Math. Review 2007b:60144
- D. Feyel and A. de La Pradelle. Curvilinear integrals along enriched paths. Electron. J. Probab. 11 (2006), 860-892. Math. Review 2007k:60112
- M. Gubinelli. Controlling rough paths. J. Funct. Anal. 216 (2004), 86-140. Math. Review 2005k:60169
- M. Gubinelli and S. Tindel. Rough evolution equations. Ann. Probab., to appear. Math. Review number not available.
- A. Lejay. An Introduction to Rough Paths. In: Azéma, J. (ed.) et al. Séminaire de probabilités 37, Lecture Notes in Mathematics 1832. Springer Berlin 2003, 1-59. Math. Review 2005e:60120
- T. Lyons and Z. Qian. System control and rough paths. Clarendon Press Oxford 2002. Math. Review 2005f:93001
- T. Lyons. Differential equations driven by rough signals. Rev. Mat. Iberoamericana 14 (1998), 215-310. Math. Review 2000c:60089
- S.-E. A. Mohammed. Stochastic functional differential equations. Research Notes in Mathematics 99, Pitman Advanced Publishing Program Boston-London-Melbourne 1984. Math. Review 86j:60151
- S.-E. A. Mohammed. Stochastic differential systems with memory: theory, examples and applications. In: L. Decreusefond (ed.) et al. Stochastic Analysis and Related Topics VI. Birkhäuser Boston 1998, 1-77. Math. Review 99k:60155
- A. Neuenkirch, I. Nourdin, A. Rößler and S. Tindel. Trees and asymptotic expansions for fractional stochastic differential equations. Ann. Inst. H. Poincaré, Probab. Stat., to appear. Math. Review number not available.
- I. Nourdin and T. Simon. Correcting Newton-Cotes integrals by Lévy areas. Bernoulli 13 (2007), 695-711. Math. Review MR2348747
- D. Nualart. Stochastic calculus with respect to the fractional Brownian motion and applications. Contemp. Math. 336 (2003), 3-39. Math. Review 2004m:60119
- D. Nualart and A. Răşcanu. Differential equations driven by fractional Brownian motion. Collect. Math. 53 (2002), 55-81. Math. Review 2003f:60105
- V. Pérez-Abreu and C. Tudor. Multiple stochastic fractional integrals: A transfer principle for multiple stochastic fractional integrals. Bol. Soc. Mat. Mex., III. 8 (2002), 187-203. Math. Review 2003k:60122
- F. Russo and P. Vallois. Forward, backward and symmetric stochastic integration. Probab. Theory Related Fields. 97 (1993), 403-421. Math. Review 94j:60113
- S. Tindel and I. Torrecilla. Fractional differential systems with H>1/4. In preparation. Math. Review number not available.
- M. Zähle. Integration with respect to fractal functions and stochastic calculus I. Probab. Theory Related Fields. 111 (1998), 333-374. Math. Review 99j:60073

This work is licensed under a Creative Commons Attribution 3.0 License.