Download this PDF file Fullscreen Fullscreen Off
References
- E. Alòs, J.A. Léon and D. Nualart. Stochastic Stratonovich calculus for fractional Brownian motion with Hurst parameter lesser than 1/2. Taiwanese J. Math. 5 (2001), 609-632. Math. Review 2000m:60059
- E. Alòs and D. Nualart. Stochastic integration with respect to the fractional Brownian motion. Stochastics Stochastics Rep. 75 (2002), 129-152. Math. Review 2004b:60138
- P. Carmona, L. Coutin and G. Montseny. Stochastic integration with respect to fractional Brownian motion. Ann. Inst. Henri Poincaré, Probab. Stat. 39 (2003), 27-68. Math. Review 2003m:60095
- P. Cheridito and D. Nualart. Stochastic integral of divergence type with respect to fractional Brownian motion with Hurst parameter H in (0,1/2). Ann. Inst. H. Poincaré, Probab. Stat. 41 (2005), 1049-1081. Math. Review 2006m:60051
- L. Coutin and Z. Qian. Stochastic analysis, rough path analysis and fractional Brownian motions. Probab. Theory Related Fields 122 (2002), 108-140. Math. Review 2003c:60066
- L. Decreusefond. Stochastic integration with respect to fractional Brownian motion. In: P. Doukhan (ed.) et al. Theory and applications of long-range dependence. Birkhäuser Boston 2003, 203-226. Math. Review MR1956051
- M. Ferrante and C. Rovira. Stochastic delay differential equations driven by fractional Brownian motion with Hurst parameter H>1/2. Bernoulli 12 (2006), 85-100. Math. Review 2007b:60144
- D. Feyel and A. de La Pradelle. Curvilinear integrals along enriched paths. Electron. J. Probab. 11 (2006), 860-892. Math. Review 2007k:60112
- M. Gubinelli. Controlling rough paths. J. Funct. Anal. 216 (2004), 86-140. Math. Review 2005k:60169
- M. Gubinelli and S. Tindel. Rough evolution equations. Ann. Probab., to appear. Math. Review number not available.
- A. Lejay. An Introduction to Rough Paths. In: Azéma, J. (ed.) et al. Séminaire de probabilités 37, Lecture Notes in Mathematics 1832. Springer Berlin 2003, 1-59. Math. Review 2005e:60120
- T. Lyons and Z. Qian. System control and rough paths. Clarendon Press Oxford 2002. Math. Review 2005f:93001
- T. Lyons. Differential equations driven by rough signals. Rev. Mat. Iberoamericana 14 (1998), 215-310. Math. Review 2000c:60089
- S.-E. A. Mohammed. Stochastic functional differential equations. Research Notes in Mathematics 99, Pitman Advanced Publishing Program Boston-London-Melbourne 1984. Math. Review 86j:60151
- S.-E. A. Mohammed. Stochastic differential systems with memory: theory, examples and applications. In: L. Decreusefond (ed.) et al. Stochastic Analysis and Related Topics VI. Birkhäuser Boston 1998, 1-77. Math. Review 99k:60155
- A. Neuenkirch, I. Nourdin, A. Rößler and S. Tindel. Trees and asymptotic expansions for fractional stochastic differential equations. Ann. Inst. H. Poincaré, Probab. Stat., to appear. Math. Review number not available.
- I. Nourdin and T. Simon. Correcting Newton-Cotes integrals by Lévy areas. Bernoulli 13 (2007), 695-711. Math. Review MR2348747
- D. Nualart. Stochastic calculus with respect to the fractional Brownian motion and applications. Contemp. Math. 336 (2003), 3-39. Math. Review 2004m:60119
- D. Nualart and A. Răşcanu. Differential equations driven by fractional Brownian motion. Collect. Math. 53 (2002), 55-81. Math. Review 2003f:60105
- V. Pérez-Abreu and C. Tudor. Multiple stochastic fractional integrals: A transfer principle for multiple stochastic fractional integrals. Bol. Soc. Mat. Mex., III. 8 (2002), 187-203. Math. Review 2003k:60122
- F. Russo and P. Vallois. Forward, backward and symmetric stochastic integration. Probab. Theory Related Fields. 97 (1993), 403-421. Math. Review 94j:60113
- S. Tindel and I. Torrecilla. Fractional differential systems with H>1/4. In preparation. Math. Review number not available.
- M. Zähle. Integration with respect to fractal functions and stochastic calculus I. Probab. Theory Related Fields. 111 (1998), 333-374. Math. Review 99j:60073

This work is licensed under a Creative Commons Attribution 3.0 License.