Local Bootstrap Percolation
Alexander E. Holroyd (University of British Columbia, Microsoft Research)
Abstract
We study a variant of bootstrap percolation in which growth is restricted to a single active cluster. Initially there is a single active site at the origin, while other sites of $\mathbb{Z}^2$ are independently occupied with small probability $p$, otherwise empty. Subsequently, an empty site becomes active by contact with two or more active neighbors, and an occupied site becomes active if it has an active site within distance 2. We prove that the entire lattice becomes active with probability $\exp [\alpha(p)/p]$, where $\alpha(p)$ is between $-\pi^2/9+c\sqrt p$ and $-\pi^2/9+C\sqrt p(\log p^{-1})^3$. This corrects previous numerical predictions for the scaling of the correction term.
Full Text: Download PDF | View PDF online (requires PDF plugin)
Pages: 385-399
Publication Date: February 9, 2009
DOI: 10.1214/EJP.v14-607
References
- J. Adler and U. Lev. Bootstrap percolation: Visualizations and applications. Brazilian J. Phys., 33(3):641--644, 2003. Math. Review number not available.
- J. Adler, D. Stauffer, and A. Aharony. Comparison of bootstrap percolation models. J. Phys. A, 22:L297--L301, 1989. Math. Review number not available.
- M. Aizenman and J. L. Lebowitz. Metastability effects in bootstrap percolation. J. Phys. A, 21(19):3801--3813, 1988. MR0968311
- J. Balogh and B. Bollobas. Sharp thresholds in bootstrap percolation. Physica A, 326(3):305--312, 2003. Math. Review number not available.
- N. Cancrini, F. Martinelli, C. Roberto, and C. Toninelli. Kinetically constrained spin models. Probab. Theory Related Fields 140(3-4): 459--504, 2008. MR2365481
- P. De Gregorio, A. Lawlor, P. Bradley, and K. A. Dawson. Exact solution of a jamming transition: closed equations for a bootstrap percolation problem. Proc. Natl. Acad. Sci. USA , 102(16):5669--5673 (electronic), 2005. MR2142892
- P. De Gregorio, A. Lawlor, and K. A. Dawson. New approach to study mobility in the vicinity of dynamical arrest; exact application to a kinetically constrained model. Europhys. Lett. , 74(2):287--293, 2006. Math. Review number not available.
- L. R. Fontes, R. H. Schonmann, and V. Sidoravicius. Stretched exponential fixation in stochastic Ising models at zero temperature. Comm. Math. Phys. , 228(3):495--518, 2002. MR1918786
- K. Frobose. Finite-size effects in a cellular automaton for diffusion. J. Statist. Phys. , 55(5-6):1285--1292, 1989. MR1002492
- J. Gravner, and A. E. Holroyd. Slow convergence in bootstrap percolation. Ann. Appl. Prob. , 18(3):909--928, 2008. MR2418233
- G. R. Grimmett. Percolation . Springer-Verlag, second edition, 1999. MR1707339
- A. E. Holroyd. Sharp metastability threshold for two-dimensional bootstrap percolation. Probab. Theory Related Fields , 125(2):195--224, 2003. MR1961342
- A. E. Holroyd. The metastability threshold for modified bootstrap percolation in d dimensions. Electron. J. Probab. , 11:no. 17, 418--433 (electronic), 2006. MR2223042
- A. E. Holroyd, T. M. Liggett, and D. Romik. Integrals, partitions, and cellular automata. Trans. Amer. Math. Soc., 356(8):3349--3368, 2004. MR2052953
- R. H. Schonmann, On the behavior of some cellular automata related to bootstrap percolation. Ann. Probab. , 20(1): 174--193, 1992. MR1143417
- D. Stauffer, Work described in Adler and Lev, 2003. Math. Review number not available.
- A. C. D. van Enter. Proof of Straley's argument for bootstrap percolation. J. Statist. Phys. , 48(3-4):943--945, 1987. MR0914911

This work is licensed under a Creative Commons Attribution 3.0 License.