Download this PDF file Fullscreen Fullscreen Off
References
- Bercu, Bernard; Touati, Abderrahmen. Exponential inequalities for self-normalized martingales with applications. Ann. Appl. Probab. 18 (2008), no. 5, 1848--1869. MR2462551
- Boucheron, Stéphane; Lugosi, Gábor; Massart, Pascal. Concentration inequalities using the entropy method. Ann. Probab. 31 (2003), no. 3, 1583--1614. MR1989444 (2004i:60023)
- Bradley, Richard C. Basic properties of strong mixing conditions. A survey and some open questions.Update of, and a supplement to, the 1986 original. Probab. Surv. 2 (2005), 107--144 (electronic). MR2178042 (2006g:60054)
- Bretagnolle, Jean. A new large deviation inequality for $U$-statistics of order 2. ESAIM Probab. Statist. 3 (1999), 151--162 (electronic). MR1742613 (2000k:60040)
- Catoni, Olivier. Laplace transform estimates and deviation inequalities. Ann. Inst. H. Poincaré Probab. Statist. 39 (2003), no. 1, 1--26. MR1959840 (2003m:60035)
- Dedecker, Jérôme. Exponential inequalities and functional central limit theorems for a random fields. ESAIM Probab. Statist. 5 (2001), 77--104 (electronic). MR1875665 (2003a:60054)
- Doukhan, Paul. Mixing.Properties and examples.Lecture Notes in Statistics, 85. Springer-Verlag, New York, 1994. xii+142 pp. ISBN: 0-387-94214-9 MR1312160 (96b:60090)
- Doukhan, P.; Massart, P.; Rio, E. Invariance principles for absolutely regular empirical processes. Ann. Inst. H. Poincaré Probab. Statist. 31 (1995), no. 2, 393--427. MR1324814 (96b:60083)
- Fromont, Magalie; Laurent, Béatrice. Adaptive goodness-of-fit tests in a density model. Ann. Statist. 34 (2006), no. 2, 680--720. MR2281881 (2009b:62091)
- Georgii, Hans-Otto. Gibbs measures and phase transitions.de Gruyter Studies in Mathematics, 9. Walter de Gruyter & Co., Berlin, 1988. xiv+525 pp. ISBN: 0-89925-462-4 MR0956646 (89k:82010)
- E.,Gine, R.,Latala, J.,Zinn, Exponential and moment inequalities for U-statistics. High dimensional probability, II, 13--38, Progr. Probab., 47 (2000), Birkhauser Boston, Boston, MA, 2000.
- Hall, P.; Heyde, C. C. Martingale limit theory and its application.Probability and Mathematical Statistics.Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1980. xii+308 pp. ISBN: 0-12-319350-8 MR0624435 (83a:60001)
- Lee, A. J. $U$-statistics.Theory and practice.Statistics: Textbooks and Monographs, 110. Marcel Dekker, Inc., New York, 1990. xii+302 pp. ISBN: 0-8247-8253-4 MR1075417 (91k:60026)
- Lumley. T, An Empirical Process Limit Theorem for Sparsely Correlated Data, UW Biostatistics Working Paper Series (2005). Working Paper 255.

This work is licensed under a Creative Commons Attribution 3.0 License.