Download this PDF file Fullscreen Fullscreen Off
References
- E. D. Andjel. Invariant measures for the zero range process. Ann. Probab. 10 (1982), 525-547. Math. Review 83j:60106
- P. Antal, A. Pisztora. On the chemical distance for supercritical Bernoulli percolation. Ann. Probab. 24 (1996), 1036-1048. Math. Review 98b:60168
- D. Ben-Avraham, S. Havlin. Diffusion and Reactions in Fractals and Disordered Systems. Cambridge University Press, Cambridge (2000). Math. Review 2003h:82001
- O. Benois, C.Kipnis, C. Landim. Large deviations from the hydrodynamical limit of mean zero asymmetric zero range processes. Stochastic Process. Appl. 55 (1995), 65-89. Math. Review 96a:60077.
- H. Brézis, M.G. Crandall. Uniqueness of solutions of the initial--value problem for u_t- ΔΦ(u)=0. J. Math. Pures and appl. 58 (1979), 153-163. Math. Review 80e:35029
- N. Berger, M. Biskup. Quenched invariance principle for simple random walk on percolation clusters. Probab. Theory Related Fields 137 (2007), 83-120. Math. Review 2007m:60085
- M. Biskup, T.M. Prescott. Functional CLT for random walk among bounded random conductances. Electronic Journal of Probability 12 (2007), 1323-1348. Math. Review 2009d:60336
- C-C. Chang, C. Landim, S. Olla. Equilibrium fluctuations of asymmetric simple exclusion processes in dimension d≥3. Probab. Theory Relat. Fields 119 (2001), 381409. Math. Review 2002e:60157
- A. De Masi, P. Ferrari, S. Goldstein, W.D. Wick. An invariance principle for reversible Markov processes. Applications to random motions in random environments. J. Statis. Phys. 55 (1985), 787-855. Math. Review 91e:60107
- J.D. Deuschel, A. Pisztora. Surface order large deviations for high--density percolation. Probab. Theory Related Fields 104 (1996), 467-482. Math. Review 97d:60053
- A. Faggionato. Random walks and exclusion processes among random conductances on random infinite clusters: homogenization and hydrodynamic limit. Electron. J. Probab. 13 (2008), 2217-2247. Math. Review number not available
- A. Faggionato. Bulk diffusion of 1D exclusion process with bond disorder. Markov Processes and Related Fields 13 (2007), 519-542. Math. Review 2008j:60230
- A. Faggionato, M. Jara, C. Landim. Hydrodynamic limit of one dimensional subdiffusive exclusion processes with random conductances. Probab. Theory Related Fields 144 (2009), 633-667. Math. Review number not available
- A. Faggionato, F. Martinelli. Hydrodynamic limit of a disordered lattice gas. Probab. Theory and Related Fields 127 (2003), 535-608. Math. Review 2004i:82041
- J. Fritz. Hydrodynamics in a symmetric random medium. Comm. Math. Phys. 125 (1989), 13-25. Math. Review 91c:82060
- L. Fontes, C.M. Newman. First Passage Percolation for Random Colorings of Z^d. Ann. Appl. Probab. 3 (1993), 746-762. Math. Review 94k:60156a
- L. Fontes, C.M. Newman. Correction: First Passage Percolation for Random Colorings of Z^d. Ann. Appl. Probab. 4 (1994), 254-254. Math. Review 94k:60156b
- P. Goncalves, M. Jara. Scaling limit of gradient systems in random environment. J. Stat. Phys. 131 (2008), 691-716. Math. Review 2009d:82068
- P.Goncalves, M. Jara. Density fluctuations for a zero-range process on the percolation cluster. Electron. Commun. Probab. 14 (2009), 382-395. Math. Review number not available
- G. Grimmett. Percolation. Second edition. Springer, Berlin (1999). Math. Review 2001a:60114
- M. Jara. Hydrodynamic limit for a zero-range process in the Sierpinski gasket. Comm. Math. Phys. 288 (2009) 773-797. Math. Review number not available
- M. Jara, C. Landim. Nonequilibrium central limit theorem for a tagged particle in symmetric simple exclusion. Ann. Inst. H. Poincaré, Prob. et Stat. 42 (2006), 567-577. Math. Review 2008h:60406
- H. Kesten. Percolation theory for mathematicians. Progress in Probability and Statistics, Vol. 2, Birkhauser, Boston, (1982). Math. Review 84i:60145
- C. Kipnis, C. Landim. Scaling limits of interacting particle systems. Springer, Berlin (1999). Math. Review 2000i:60001
- C. Kipnis, S.R.S. Varadhan. Central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusion. Commun. Math. Phys. 104 (1986), 1-19. Math. Review 87i:60038
- C. Landim, T. Franco. Hydrodynamic limit of gradient exclusion processes with conductances. Archive for Rational Mechanics and Analysis 195 (2010), 409-439. Math. Review number not available
- C. Landim, M. Mourragui. Hydrodynamic limit of mean zero asymmetric zero range processes in infinite volume. Ann. Inst. H. Poincaré, Prob. et Stat. 33 (1997), 65-82. Math. review 98e:60159
- T.M. Liggett. Interacting particle systems. Springer, New York (1985). Math. Review 86e:60089
- P. Mathieu. Quenched invariance principles for random walks with random conductances}. J. Stat. Phys. 130 (2008), 1025-1046. Math. Review 2009b:82040
- P. Mathieu, A.L. Piatnitski. Quenched invariance principles for random walks on percolation clusters}. Proceedings of the Royal Society A 463 (2007), 2287-2307. Math. Review 2008e:82033
- J. Quastel. Diffusion in disordered media. In Proceedings in Nonlinear Stochastic PDEs (1996), T. Funaki and W. Woyczinky eds, Springer, New York, 65-79. Math. Review 97k:60278
- J. Quastel. Bulk diffusion in a system with site disorder. Ann. Probab. 34 (2006), 1990-2036. Math. Review 2007i:60133
- T. Seppäläinen. Translation Invariant Exclusion Processes. Available online
- V. Sidoravicius, A.-S. Sznitman. Quenched invariance principles for walks on clusters of percolation or among random conductances. Probab. Theory Related Fields 129 (2004), 219244. Math. Review 2005d:60155
- F.J. Valentim. Hydrodynamic limit of gradient exclusion processes with conductances on Z^d. Preprint (2009).
- S.R.S. Varadhan. Nonlinear diffusion limit for a system with nearest neighbor interactions II. Asymptotic Problems in Probability Theory: Stochastic Models and Diffusion on Fractals , edited by K. Elworthy and N. Ikeda, Pitman Research Notes in Mathematics 283 , Wiley, 75-128 (1994). Math. Review 97a:60144
- J.L. Vázquez. The porous medium equation: mathematical theory. Clarendon Press, Oxford (2007). Math. Review 2008e:35003

This work is licensed under a Creative Commons Attribution 3.0 License.