Download this PDF file Fullscreen Fullscreen Off
References
- Baik, J. and Suidan, T. Random matrix central limit theorems for nonintersecting random walks. Ann. Probab. 35 (2007), 1807--1834. Math. Review 2009i:60038
- Bertoin, J. and Doney, R.A. On conditioning a random walk to stay nonnegative. Ann. Probab. 22 (1994), 2152--2167. Math. Review 96b:60168
- Bodineau, T. and Martin, J. A universality property for last-passage percolation paths close to the axis . Electron. Comm. in Probab. 10 (2005), 105--112. Math. Review 2006a:60189
- Borisov, I.S. On the question of the rate of convergence in the Donsker--Prokhorov invariance principle. Theory Probab. Appl. 28 (1983),388--392. Math. Review 84g:60061
- Borovkov, A.A. Notes on inequalities for sums of independent random variables. Theory Probab. Appl. 17 (1972), 556--557. Math. Review 46 #8297
- Bryn-Jones, A. and Doney, R.A. A functional limit theorem for random walk conditioned to stay non-negative. J. London Math. Soc. (2) 74 2006, 244--258. Math. Review 2007k:60093
- Dyson F.J. A Brownian-motion model for the eigenvalues of a random matrix. J. Math. Phys 3 (1962), 1191--1198. Math. Review 26 #5904
- Eichelsbacher, P. and König, W. Ordered random walks. Electron. J. Probab. 13, (2008) 1307--1336. Math. Review 2010b:60134
- Grabiner, D.J. Brownian motion in a Weyl chamber, non-colliding particles, and random matrices. Ann. Inst. H. Poincare Probab. Statist., 35(2) (1999), 177--204. Math. Review 2000i:60091
- König, W., O'Connell, N. and Roch, S. Non-colliding random walks, tandem queues, and discrete orthogonal polynomial ensembles. Electron. J. Probab. 7, (2002), 1--24. Math. Review 2003e:60174
- König, W. Orthogonal polynomial ensembles in probability theory. Probab. Surv. 2 (2005), 385--447. Math. Review 2007e:60007
- König, W and Schmid, P. Random walks conditioned to stay in Weyl chambers of type C and D. arXiv:0911.0631 (2009).
- Major, P. The approximation of partial sums of rv's. Z. Wahrscheinlichkeitstheorie verw. Gebiete 35 (1976), 213--220. Math. Review 54 #3823
- Nagaev, S.V. Large deviations of sums of independent random variables. Ann. Probab. 7 (1979), 745--789. Math. Review 80i:60032
- O'Connell, N. and Yor, M. A representation for non-colliding random walks. Elect. Comm. Probab. 7 (2002), 1--12. Math. Review 2003e:60189
- Puchala, Z, Rolski, T. The exact asymptotic of the collision time tail distribution for independent Brownian particles with different drifts. Probab. Theory Related Fields 142 (2008), 595--617. Math. Review 2009i:60145
- Schapira, B. Random walk on a building of type $\tilde{A}_r$ and Brownian motion on a Weyl chamber. Ann. Inst. H. Poincare Probab. Statist. 45 (2009), 289-301. Math. Review 2521404
- Varopoulos, N.Th. Potential theory in conical domains. Math. Proc. Camb. Phil. Soc. 125 (1999), 335--384. Math. Review 99i:60145

This work is licensed under a Creative Commons Attribution 3.0 License.