Download this PDF file Fullscreen Fullscreen Off
References
- Breiman, Leo. Probability.Corrected reprint of the 1968 original.Classics in Applied Mathematics, 7. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1992. xiv+421 pp. ISBN: 0-89871-296-3 MR1163370 (93d:60001)
- Chen, Louis H. Y. A short note on the conditional Borel-Cantelli lemma. Ann. Probab. 6 (1978), no. 4, 699--700. MR0496420 (80m:60042)
- Engländer, János. Quenched law of large numbers for branching Brownian motion in a random medium. Ann. Inst. Henri Poincaré Probab. Stat. 44 (2008), no. 3, 490--518. MR2451055 (2009k:60181)
- Engländer, János; Harris, Simon C.; Kyprianou, Andreas E. Strong law of large numbers for branching diffusions. Ann. Inst. Henri Poincaré Probab. Stat. 46 (2010), no. 1, 279--298. MR2641779
- Engländer, János; Kyprianou, Andreas E. Local extinction versus local exponential growth for spatial branching processes. Ann. Probab. 32 (2004), no. 1A, 78--99. MR2040776 (2005k:60270)
- Engländer, János; Pinsky, Ross G. On the construction and support properties of measure-valued diffusions on $Dsubseteq{bf R}sp d$ with spatially dependent branching. Ann. Probab. 27 (1999), no. 2, 684--730. MR1698955 (2001a:60099)
- Engländer, János; Winter, Anita. Law of large numbers for a class of superdiffusions. Ann. Inst. H. Poincaré Probab. Statist. 42 (2006), no. 2, 171--185. MR2199796 (2007d:60047)
- Feng, Jin; Kurtz, Thomas G. Large deviations for stochastic processes.Mathematical Surveys and Monographs, 131. American Mathematical Society, Providence, RI, 2006. xii+410 pp. ISBN: 978-0-8218-4145-7; 0-8218-4145-9 MR2260560 (2009g:60034)
- Gill, H. Super Ornstein-Uhlenbeck process with attraction to its center of mass}, preprint, electronically available at http://www.math.ubc.ca/~hsgill/sou.pdf
- Kallenberg, Olav. Foundations of modern probability.Second edition.Probability and its Applications (New York). Springer-Verlag, New York, 2002. xx+638 pp. ISBN: 0-387-95313-2 MR1876169 (2002m:60002)
- Kyprianou, A. E. Asymptotic radial speed of the support of supercritical branching Brownian motion and super-Brownian motion in ${bf R}sp d$. Markov Process. Related Fields 11 (2005), no. 1, 145--156. MR2099406 (2006e:60126)
- Pinsky, Ross G. Positive harmonic functions and diffusion.Cambridge Studies in Advanced Mathematics, 45. Cambridge University Press, Cambridge, 1995. xvi+474 pp. ISBN: 0-521-47014-5 MR1326606 (96m:60179)
- Racz, M. Z. (2010) Competing stocks: analyzing a stochastic interacting particle system, Diploma thesis, Budapest University of Technology and Economics.
- Tribe, R. (1992) The behavior of superprocesses near extinction. Ann. Probab. 20 (1), 286--311.

This work is licensed under a Creative Commons Attribution 3.0 License.