Download this PDF file Fullscreen Fullscreen Off
References
- G.E. Andrews,? R. Askey, and R. Roy. Special Functions. Cambridge University Press (2000).
- E.W. Barnes. A new development of the theory of the hypergeometric functions. Proc. London Math. Soc. 6 (1908), 141--177.
- E.W.Barnes. A transformation of generalized hypergeometric series. Quart. J. Math. 41 (1910), 136--140.
- L. Bondesson. Generalized gamma convolutions and related classes of distributions and densities. Lecture Notes in Statistics 76 (1992) Springer-Verlag. MR1224674 (94g:60031)
- P. Carmona, F. Petit, and M. Yor. On the distribution and asymptotic results for exponential functionals of LÃvy processes. Exponential functionals and principal values related to Brownian motion, 73--130, Bibl. Rev. Mat. Iberoamericana (1997). MR1648657 (99h:60144
- J.-F. Chamayou and G. Letac. Additive properties of the Dufresne laws and their multivariate extension. J. Theoret. Probab. 12 (1999), 1045--1066. MR1729469 (2000m:60010)
- L. Chaumont and M. Yor. Exercises in probability. Cambridge Series in Statistical and Probabilistic Mathematics 13 Cambridge University Press (2003). MR2016344 (2004m:60001)
- D.R. Cox. A use of complex probabilities in the theory of stochastic processes. Proc. Cambridge Philos. Soc. 51 (1955), 313--319. MR0068767 (16,938d)
- D. Dufresne. Algebraic properties of beta and gamma distributions, and applications. Adv. Appl. Math. 20 (1998), 285--299. MR1618423 (99i:60036
- D. Dufresne. Beta products with complex parameters. Comm. in Stat., Theo. and Meth. 39 (2010), 837--854.
- A. ErdÃlyi. Higher transcendental functions Vol. 2. McGraw-Hill, New York (1953).
- W. Feller. An introduction to probability theory and its applications, Vol. II. 2nd Ed. John Wiley & Sons (1971). MR0270403 (42 #5292)
- L. Gordon. A stochastic approach to the gamma function. Amer. Math. Monthly 101 (1994), 858--865. MR1300491 (95k:33003)
- M. Kaluszka and W. Krysicki. On decompositions of some random variables. Metrika 46 (1997), 159--175. MR1473905 (98h:62016)
- N.N. Lebedev Special functions and their applications. Dover, New York? (1972). MR0350075 (50 #2568)
- E. Lukacs and O. Sz·sz. On analytic characteristic functions. Pacific J. Math. 2 (1952), 615--625. MR0051461 (14,485f)
- A.M. Mathai and R.K. Saxena. Generalized hypergeometric functions with applications in statistics and physical sciences. Lecture Notes in Mathematics 348 Springer-Verlag, Berlin-New York (1973). MR0463524 (57 #3471)
- S.J. Patterson. An introduction to the theory of the Riemann zeta-function. Cambridge Studies in Advanced Mathematics 14 Cambridge University Press (1988). MR0933558 (89d:11072)
- K. Sato. LÃvy processes and infinitely divisible distributions. Cambridge Studies in Advanced Mathematics 68 Cambridge University Press (1999). MR1739520 (2003b:60064)
- M.D. Springer. The algebra of random variables. Wiley Series in Probability and Mathematical Statistics (1979). MR0519342 (80h:60029)
- F.W. Steutel. Note on the infinite divisibility of exponential mixtures. Ann. Math. Statist 38 (1967), 1303--1305. MR0215339 (35 #6180)
- U. Sumita and Y. Masuda. Classes of probability density functions having Laplace transforms with negative zeros and poles. Adv. Appl. Probab. 19 (1987), 632--651. MR0903540 (89a:60045)
- W. Vervaat. On a stochastic difference equation and a representation of nonnegative infinitely divisible random variables. Adv. in Appl. Probab. 11 (1979), 750--783. MR0544194 (81b:60064)
- D.V. Widder. The Laplace transform. Princeton Mathematical Series 6. Princeton University Press (1941). MR0005923 (3,232d)
- A.H. Zemanian. On the pole and zero locations of rational Laplace transformations of non-negative functions. Proc. Amer. Math. Soc. 10 (1959), 868--872. MR0109996 (22 #879)
- Zemanian, A. H. On the pole and zero locations of rational Laplace transformations of non-negative functions II. Proc. Amer. Math. Soc. 12 (1961), 870--874. MR0136938 (25 #398)

This work is licensed under a Creative Commons Attribution 3.0 License.