Download this PDF file Fullscreen Fullscreen Off
References
- M. A. Arcones and E. Giné. On decoupling, series expansions, and tail behavior of chaos processes. J. Theoret. Probab. 6 (1993), 101--122. Math. Review 94b:60008
- A. Basse and J. Pedersen. Lévy driving moving averages and semimartingales. Stochastic Process. Appl. 119 (2009), 2970--2991. Math. Review 2010m:60154
- A. Basse-O'Connor and S.-E. Graversen. Path and semimartingale properties of chaos processes. Stochastic Process. Appl. 120 (2010), 522--540. Math. Review 2594369
- C. Borell. Tail probabilities in Gauss space. In Vector space measures and applications (Proc. Conf., Univ. Dublin, Dublin, 1977), II, Lecture Notes in Phys. 77 (1978), 73--82. Berlin: Springer. Math. Review 80c:60055
- C. Borell. On the integrability of Banach space valued Walsh polynomials. In Séminaire de Probabilités, XIII (Univ. Strasbourg, Strasbourg, 1977/78), Lecture Notes in Math. 721 (1979), 1--3. Berlin: Springer. Math. Review 81g:42026
- C. Borell. On polynomial chaos and integrability. Probab. Math. Statist. 3 (1984), 191--203. Math. Review 87b:60006
- A. de Acosta. Stable measures and seminorms. Ann. Probability 3 (1975), 865--875. Math. Review 52 #12023
- V. H. de la Peña and E. Giné. Decoupling. Probability and its Applications (New York), (1999). Springer-Verlag, New York. Math. Review 99k:60044
- X. Fernique. Intégrabilité des vecteurs gaussiens. (French) C. R. Acad. Sci. Paris Sér. A-B 270 (1970), A1698--A1699. Math. Review 42 #1170
- X. Fernique. Fonctions aléatoires gaussiennes, vecteurs aléatoires gaussiens Montreal, QC: Universitée de Montréal Centre de Recherches Matématiques, (1997). Math. Review 99f:60078
- M. C. Gemignani. Elementary topology. Corrected reprint of the second edition. Dover Publications, Inc., New York, 1990. Math. Review 91k:54002
- J. Hoffmann-Jørgensen. Integrability of seminorms, the 0-1 law and the affine kernel for product measures. Studia Math. 61 (1977), 137--159. Math. Review 57 #43132
- J. Hoffmann-Jørgensen. Probability with a view toward statistics. Vol. I. Chapman & Hall Probability Series. New York: Chapman & Hall, (1994). Math. Review 95c:60001a
- N. C. Jain and D. Monrad. Gaussian quasimartingales. Z. Wahrsch. Verw. Gebiete 59 (1982), 139--159. Math. Review 83k:60046
- N. C. Jain and D. Monrad. Gaussian measures in Bp . Ann. Probab. 11 (1983), 46--57. Math. Review 84c:60060
- W. Krakowiak and J. Szulga. Random multilinear forms. Ann. Probab. 14 (1986), 955--973. Math. Review 87h:60094
- W. Krakowiak and J. Szulga. A multiple stochastic integral with respect to a strictly p-stable random measure. Ann. Probab. 16 (1988), 764--777. Math. Review 89h:60088
- S. Kwapień and W. A. Woyczyński. Random series and stochastic integrals: single and multiple. Probability and its Applications. Birkhäuser Boston, Inc., Boston, MA, (1992) Math. Review 94k:60074
- M. Ledoux and M. Talagrand. Probability in Banach spaces. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 23, (1991). Springer-Verlag, Berlin. Isoperimetry and processes. Math. Review 93c:60001
- M. Marcus and J. Rosiński. Sufficient conditions for boundedness of moving average processes. In Stochastic inequalities and applications, Progr. Probab. 56, (2003), 113--128. Birkhäuser, Basel. Math. Review 2005h:60115
- D. Nualart. The Malliavin calculus and related topics . (Second edition). Probability and its Applications (New York), (2006). Springer-Verlag, Berlin. Math. Review 2006j:60004
- G. Pisier. Les inégalités de Khintchine-Kahane, d'après C. Borell. (French) In Séminaire sur la Géométrie des Espaces de Banach (1977--1978), Exp. No. 7, 14 pp, (1978). École Polytech., Palaiseau,. Math. Review 81c:60005
- G. Pólya and G. Szegö. Aufgaben und Lehrsätze aus der Analysis. Zweiter Band. Funktionentheorie, Nullstellen, Polynome Determinanten, Zahlentheorie. (German) Vierte Auflage. Heidelberger Taschenbücher, Band 74, (1954). Springer-Verlag, Berlin-Göttingen-Heidelberg. Math. Review 15,512b
- B. Rajput and J. Rosiński. Spectral representations of infinitely divisible processes. Probab. Theory Related Fields 82 (1989), 451--487. Math. Review 91i:60149
- J. Rosiński. On stochastic integral representation of stable processes with sample paths in Banach spaces. J. Multivariate Anal. 20 (1986), 277--302. Math. Review 88b:60101
- J. Rosiński and G. Samorodnitsky. Distributions of subadditive functionals of sample paths of infinitely divisible processes. Ann. Probab. 21 (1993), 996--1014. Math. Review 94h:60057
- J. Rosiński and G. Samorodnitsky. Symmetrization and concentration inequalities for multilinear forms with applications to zero-one laws for Lévy chaos. Ann. Probab. 24 (1996), 422--437. Math. Review 97k:60041
- Rudin, Walter. Functional analysis. Second edition. International Series in Pure and Applied Mathematics, (1991). McGraw-Hill, Inc., New York. Math. Review 92k:46001
- C. Stricker. Semimartingales gaussiennes---application au problème de l'innovation. (French) [Gaussian semimartingales---application to the innovation problem] Z. Wahrsch. Verw. Gebiete 64 (1983), 303--312. Math. Review 85c:60054

This work is licensed under a Creative Commons Attribution 3.0 License.